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Abstract
This work presents a technique to compute symbolic polynomial
approximations of the amount of dynamic memory required to
safely execute a method without running out of memory, for Java-
like imperative programs. We consider object allocations and deal-
locations made by the method and the methods it transitively calls.
More precisely, given an initial configuration of the stack and the
heap, the peak memory consumption is the maximum space occu-
pied by newly created objects in all states along a run from it. We
over-approximate the peak memory consumption using a scoped-
memory management where objects are organized in regions as-
sociated with the lifetime of methods. We model the problem of
computing the maximum memory occupied by any region config-
uration as a parametric polynomial optimization problem over a
polyhedral domain and resort to Bernstein basis to solve it. We ap-
ply the developed tool to several benchmarks.

Categories and Subject Descriptors F3.2 [Logics and Meaning
of Programs]: Program Analysis; F2.9 [Analysis of Algorithms
and Problem Complexity]: General

General Terms Languages, Theory, Verification, Reliability

Keywords Heap Space Analysis, Heap Consumption, Memory
Regions, Java

1. Introduction
Automatic dynamic memory management is a very powerful and
useful mechanism which does not come for free. Indeed, it is well
known that garbage collection makes execution and response times
extremely difficult to predict, mainly because of unbounded pause
times. Several solutions have been proposed, either by building
GCs with real-time performance, e.g. [4] (see [15] for a survey),
or by using a scope-based programming paradigm, e.g. [18, 6, 9].
However, there is still the problem of predicting how much memory
a program will need to run without crashing with an out-of-memory
exception. This question is inherently hard [19].

In [7] we presented a technique for computing a parametric
upper-bound of the amount of memory dynamically requested by
Java-like imperative programs. The idea consists in quantifying dy-
namic allocations done by a method. Given a method m with pa-
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rameters Pm it shows an algorithm that computes a polynomial
over Pm which over-approximates the amount of memory allo-
cated during the execution of m. This bound is a symbolic over-
approximation of the total amount of memory the application re-
quests to a virtual machine via new statements, but not the actual
amount of memory really consumed by the application. This is be-
cause memory freed by the GC is not taken into account. Roughly
speaking, the technique identifies allocation sites (new statements)
reachable from the method under analysis and counts the num-
ber of times those statements are visited. To do that, linear invari-
ants describing possible valuations of variables at each allocation
site are generated and the number of integer solutions of those in-
variants are counted. Finally the result is adapted to consider the
type of each allocated object. For region-based memory manage-
ment [18, 6, 9] where objects are placed in regions associated with
computation units, the same technique allows obtaining polynomial
bounds of the size of every memory region, assuming regions are
synthesized at compile-time (e.g.,[27, 9, 25]).

Here we propose a new technique to over-approximate the
amount of memory required to run a method (or a program). Given
a method m with parameters Pm we obtain a parametric upper-
bound of the amount of memory necessary to safely execute m
and all methods it calls, without running out of memory. This ex-
pression can be seen as a pre-condition stating that m requires that
much free memory to be available before executing. To compute
this estimation we consider memory deallocation that may occur
during the execution of the method. Basically, we adopt a region-
based memory management where region lifetime is associated
with method lifetime. Then, we model all the potential configura-
tions of regions stacks at run-time in order to obtain an expression
of the peak consumption of the method under analysis. This mod-
eling leads to a set of polynomial (and parametric) maximization
problems. We solve this problem using a technique based on Bern-
stein basis technique [13] which yields a parametric solution.

An important feature of the approach is that the obtained ex-
pressions are parametric are easy-to-evaluate. In fact, the resulting
expressions are evaluation trees composed of a small (and known at
compile-time) number of polynomials. Among other applications,
those expressions can be evaluated at run-time just before execu-
tion of the method under analysis -using its actual parameters- in
order to obtain an over-approximation which predicts the worst-
case amount of memory that may be occupied by the execution of
the method.

It is worth mentioning that focusing on scoped-memory also
provides a solution to a more general problem since the amount
of memory required to run a method in a region-based memory
management can be used as an over approximation of the amount
required to run a method in the context of a GC that frees objects
as soon as they become dead or is triggered by a threshold.

In a few words, the main contributions of this work are:



• A formal problem statement of peak consumption that serves as
paramount and source of a rigorously-derived model to approx-
imate peak memory consumption using region-based GC.
• An effective solution based on using program invariants and

region sizes to produce polynomial maximization problems.
• A parametric (and compile-time) solution that builds run-time

evaluation trees by solving off-line maximization problems us-
ing Bernstein basis.
• A practical validation of the method consisting of an implemen-

tation of this technique into a tool to automatically obtain dy-
namic memory specifications, together with some benchmarks.

To our knowledge, the technique presented here to infer polyno-
mial bounds of dynamic memory peaks under a region-based man-
ager and its effective computation using Bernstein basis is a novel
approach to predict memory requirements.

Outline Sec. 2 informally explains the problem and suggests a so-
lution through an illustrative example. Sec. 3 introduces the basic
definitions and assumptions. Sec. 4 presents an effective definition
for scoped-based memory management. Sec. 5 proposes a compu-
tational procedure to solve the problem. Sec. 6 presents a prototype
and shows experimental results on several benchmarks. Sec. 7 dis-
cusses related work. Sec. 8 presents conclusions and future work.

2. Informal presentation
Consider the program in Fig. 1. Its call graph, whose nodes are
labeled with the set of new statements (allocation sites) in the
corresponding method, is shown in Fig. 2. Let us informally study
the behavior of this program with respect to memory occupancy.

class Test {
void m0(H h) {

1: h.m1();
2: h.m2(3 * h.mc);

}
void m1() {

3: B[][] dummyArr
= new B[this.mc][];

4: for (int i = 1;
i <= this.mc; i++) {

5: dummyArr[i-1]= m3(i);
}

}
void m2(int k2) {

6: B[] m3Arr=m3(k2);
}

B[] m3(int n) {
7: B[] arrB = new B[n];
8: N l = new N();

9: for (int j=1;j <= n;j++) {
10: arrB[j-1] = l.m4(j);

}
11: return arrB;

}
}
class N {

N next; B value;

B m4(int v) {
12: N c = new N();
13: c.value = new B(v);
14: c.next = this.next;
15: this.next = c;
16: return c.value;

}
}
class H {

int mc;
}

Figure 1. Running example

Figure 2. Call graph

Fig. 3 shows the curves of memory occupancy in two runs
where m0 is invoked with h such that h.mc = 3 and h.mc =
7, respectively. The abscissa represents program “time” in terms
of successive call chains (i.e., paths in the call graph) executed
along the run. We write call chains by alternating methods and line
numbers, for example, m0.1.m1.5.m3. The ordinate represents
occupied memory in bytes.

Light gray curves trace the accumulated amount of memory
allocated by m0. Each light gray curve has a maximum value
corresponding to the total amount of allocated memory. The actual
value of this total allocation depends on the calling context, that is,
the call chain and the actual parameters of the called methods. The
total allocation is the maximal memory budget for executing m0 in
a given context. That is, if such amount is available when calling
m0, it is ensured to execute without ever exhausting the memory,
even if no garbage collection is performed during its execution.

Computing total allocation is theoretically difficult [19]. In [7]
we proposed a static analysis to estimate it in a conservative man-
ner as a polynomial function of the parameters, regardless of call
chains. For instance, the polynomial bounding from above the total
allocation of m0 is:

totAllocm0(h.mc) = size(B[])

(
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2
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where size(C) is the memory occupied by an object of class C. Let
us assume for simplicity that size(C) = 1. Then, totAllocm0(3) =
52 and totAllocm0(7) = 162. Dotted lines in Fig. 3 plot these
values for the corresponding runs.

Black curves trace memory occupancy under an “ideal” GC that
reclaims memory as soon as objects are no longer referenced. Each
black curve has a maximum value corresponding to the maximum
amount of memory occupied by live objects along the run.

This peak consumption defines the memory requirement of m0
in a calling context. That is, m0 is guaranteed to exhaust the
memory, unless there is at least such amount when it is called. For
instance, if the free memory when m0 is called with h.mc = 3 is
smaller than 20, m2 will end up throwing an exception. Since no
other GC can do better than the ideal one, the peak consumption
under the latter is indeed the minimal memory requirement of the
program. That is, it is definitely unsafe to run it with a smaller
amount of free memory, for whatever GC.

The value and place of occurrence in the program body of the
peak heavily depend on the calling context. Fig. 3 shows that the
peak reaches two quite different values (near 30 in the first run, and
near 70 in the second one), and it is attained by two different call
chains (m0.2.m2 . . . and m0.1.m1 . . ., respectively).

Total allocation and peak consumption for the ideal GC give
“absolute” upper and lower bounds of memory for executing a pro-
gram, respectively. The actual memory occupancy under a particu-
lar GC lies somewhere in between. A first attempt to conservatively
approximating its peak consumption would be to resort to total al-
location. However, as Fig. 3 illustrates, this results in an overly pes-
simistic prediction. Obtaining tighter estimations requires knowing
when, what, and how many objects are collected.

Therefore, computing peak consumption precisely is not an easy
task. Indeed, it is undecidable. In practice, as this example shows,
the main difficulty relies on the fact that we need to take into
account not only all possible calling contexts, as for computing
total allocation, to characterize how many objects can be collected,
but also the behavior of the underlying GC, to determine when and
what objects will actually be collected.

To pursue the analysis of memory occupancy of our example, let
us assume the GC behaves as follows: (1) collections take place on
method returns, and (2) only dead objects allocated by a method’s



Figure 3. Two traces: h.mc = 3 (left), h.mc = 7 (right).

transitive callees are collected. This way, the heap is organized as a
partition where each “region” has an associated method in the call
stack whose return will cause its collection [25].

In our example, objects created in m4 by the allocation site at
line 12 (denotedm4.12) will be inm3’s region and collected when
m3 returns (they cannot be collected whenm4 returns because they
are pointed-to by objects in its calling context, i.e., they escape the
scope of m4). Those from m4.13 will belong to the regions of m2
or m1, depending on the call chain leading to m4: they will be
associated with m2 if the call chain is m0.2.m2.6.m3.10.m4, and
with m1 if it is m0.1.m1.5.m3.10.m4. A similar reasoning can
be applied for m3.7, m3.8 and m1.3. Objects allocated at m3.7
are collected when m2 or m1 return, depending on the call chain,
while those from m3.8 are in m3’s region, and those from m1.3
are in m1’s.

Once objects (identified by their allocation sites) collection time
have been fixed, that is, the regions identified, their size is bounded
by the total allocation restricted to the set of allocation sites of
each region. This size can be conservatively approximated using
the techniques of [7].

From m0, m0.1.m1.5.m3.10.m4 and m0.2.m2.6.m3.10.m4
are the two (maximal) call chains. Since no object allocated by m1
and its transitive callees will live longer than m1, and similarly for
objects allocated in the call chain from m2, the peak consumption
for m0 is clearly the maximum between the peak along each call
chain, which are the sum of the maximum sizes of the regions.

Take for instance m3. It is called h.mc times from m1 (line 5).
Each time, it allocates in m1’s region (because it returns it to its
caller) an array B[] of n elements, allocates an object of type N
in its own region, and calls n times m4 which allocates an object
of type N in m3’s region and one of type B in m1’s (becaus it is
returned and assigned to b3[] in m3). Its region size is therefore
size(N)(1 + n), where n goes from 1 to h.mc. Clearly, its peak is
achieved when n is equal to h.mc, at the maximum region size of
size(N)(1 + h.mc), that is, the maximum value of the expression
size(N)(1 + n) over the interval 1 ≤ n ≤ h.mc.

We can apply a similar reasoning to the other methods. Without
getting into more details (see [7] and following sections), the poly-
nomials P1(h.mc) and P2(h.mc) characterizing the peaks for call
chains m0.1.m1.5.m3.10.m4 and m0.2.m2.6.m3.10.m4 are:
P1 = (size(B[]) + size(B))

1

2

(
h.mc + h.mc2

)
+ size(B[])h.mc

+ size(N)(1 + h.mc)

P2 = (size(B[]) + size(B))3h.mc + size(N)(1 + 3h.mc)

Then, again assuming size(C) = 1 for all C:
P1(3) = max(19, 28) = 28 and P2(7) = max(71, 64) = 71,
which is consistent with the executions shown in Fig. 3. Moreover,
in this case, we can obtain a max-free expression of the peak:

max(P1, P2) = max
(
h.mc2 + 3h.mc + 1, 9h.mc + 1

)
= 1 + 3h.mc + h.mc

{
6 if 0 ≤ h.mc ≤ 6
h.mc else

This example suggests an approach for computing a conserva-
tive approximation of the ideal peak consumption, yet tighter than
the total allocation. Roughly speaking, the main idea consists in
chosing a region-based GC whose peak consumption is computed
as the maximum over all call chains of the sums of the maximum re-
gion sizes along the call chain. Since we expect to obtain an expres-
sion on terms of input parameters, not a single value, this requires
symbolically maximizing an expression (in general non-linear) over
a domain constraining the values of the parameters (given by a pro-
gram invariant, e.g., 1 ≤ n ≤ h.mc). The rest of the paper is
devoted to fixing the mathematical framework and developing a
concrete and systematic solution to the problem.

3. Problem statement
3.1 Notation
Let Prog be a sequential Java-like program. Each methodm ∈M
is characterized by its formal parameters Pm, local variables Vm,
and body (list of statements) Bm ∈ S∗, where S is the set of
statements (new, call, ret, ...). Bjm is the j-th statement. Wlog,
we assume there is a distinguished method under analysis mua. Let
Var =

⋃
m∈M Vm, Par =

⋃
m∈M Pm, and V be a set of possible

values.
We assume that a complete call graph, CG = (M, E), E ⊆

M × N × M, can be computed at compile-time (closed-world
assumption)1. CGm is the subgraph of CG rooted at m ∈ M.
We will heavily manipulate the control part of stacks in the rest
of the paper (control stacks, thereafter). The possible configura-
tions of control stacks the program may reach are statically over-
approximated by the set of paths in the call graph, which we call
call chains. That is, Π ⊆ (M×N)∗ ×M is the set of call chains:
cch ∈ CCH iff cch is a path in CG. |cch| is the length of cch.
Actually, control stacks are much like call chains but, since we
want them to represent integrally control information of a program
state, we also include program counter as the last element. That is,
CST ⊆ (M×N)∗ is the set of control stacks: cst = cch.n ∈ CST
iff cch ∈ CCH and n ∈ [1, |Bcch|cch| |]. We define |cst| to be |cch|.
For all x, x′ ∈ CST ∪ CCH, k ≥ 1, x[1..k] is the prefix (call
chain) m1 . . .mk ∈ CCH of x, xk is the k-th method, x ≡k x′
iff x[1..k] = x′[1..k], and x ≡ x′ iff |x| = |x′| and x ≡|x| x′.
CCHm

M
= {cch ∈ CCH | cch1 = m}.

1 In general, because of polymorphism, CG is a conservative approximation
of all possible concrete method calls.



3.2 Semantics
Firstly, semantics will be defined from a functional perspective
which means that no dead object collection is performed. Seman-
tics is given by means of traces of a state transition system. In this
setting, a dynamic memory manager behavior will be modeled as a
trace transformer, in the sense that they specify how they would get
rid of dead objects of the heap.

A program state σ ∈ Σ consists of a control stack cst(σ) ∈
CST, a data stack v(σ) ∈ [(Var ∪ Par 7→ V)∗] of valuations of
variables and parameters, and a heap h(σ) ⊆ O×F ×O,O ⊆ V ,
modeled as a directed graph of objects where edges represent field
(or array) dereferences. mk(σ), pck(σ), and vk(σ) denote the k-th
method, control location and data valuation, respectively2.

An object o ∈ O is live in h(σ) iff it is reachable from a variable
defined in the state, that is, there exists k such that vk(σ)(v) has a
path to o in h(σ). The set of live objects of σ is denoted live(σ).
We define dead(σ) to be h(σ) \ live(σ).

Let size(o) ≥ 1 be the amount of memory occupied by o. Given
heapsH,H′, usedH(H′) M

=
∑
o∈H′−H size(o). That is the amount

of memory occupied by objects inH′ which are not inH: We write
usedH(σ) as a shorthand for usedH(h(σ)).

The semantics of Prog is given by a deterministic transition
system 〈Σ,→〉, where for all σ ∈ Σ, cst(σ) = cst.(mua, n).cst′,
with cst, cst′ ∈ CST, mua 6∈ cst. Σmua ⊆ Σ is the set of initial
states: σ̄ ∈ Σmua iff cst(σ̄) = cst.(mua, 0). That is, this set
encompasses all possible invocations of mua3.

The transition relation→ is defined by the operational seman-
tics without deleting dead objects from the heap. For σ ∈ Σ,
succ(σ) is such that σ → succ(σ). For all σ, σ′ ∈ Σ which
are equal except for the set of dead objects, succ(σ) is equal to
succ(σ′), except for the set of dead objects. Also, it is not possible
to forge pointers: dead(σ) ⊆ dead(succ(σ)).

A run is a sequence ρ = σ0, σ1 . . . ∈ Σ∗, with σi → σi+1,
and σ0 ∈ Σmua. We denote ρi the state corresponding to the i-th
element of ρ. Since the transition system is deterministic, a run is
uniquely determined by its initial state. Then we use σ̄i to denote
the i-element of the run starting at σ̄.

A dynamic memory manager is a function Γ : Σ∗ 7→ Σ∗ that
removes from the heap (a subset of) dead objects, that is, for all
runs ρ, Γ(ρ) is such that for all i ≥ 0, dead(Γi(ρ)) ⊆ dead(ρi)
(where Γi(ρ) is the i-element of Γ(ρ)) while keeping the rest of the
state unchanged. We write σ̄Γ

i to denote the state corresponding to
the i-element of the run starting at σ̄ and collected using Γ.

The goal of defining the semantics without dead-object collec-
tion4 is to be able to compare dynamic memory managers with re-
spect to their freeing power: we say that Γ is more efficient than
Γ̂ iff dead(Γi(ρ)) ⊆ dead(Γ̂i(ρ)). This implies: usedH(Γi(ρ)) ≤
usedH(Γ̂i(ρ)), for all ρ, i,H.

Let ideal denote the dynamic memory manager such that
dead(ideali(ρ)) = ∅. Thus, ideal is the most efficient one, i.e.,
usedH(ideali(ρ)) ≤ usedH(Γi(ρ)), for all Γ, ρ, i,H.

3.3 Peak consumption
Given Γ and σ̄ ∈ Σmua, we are interested in knowing the maximum
space occupied by all objects created (i.e., not in h(σ̄)) along the
run starting at σ̄. We call this maximum the peak:

peakΓ(σ̄)
M
= max

i
usedh(σ̄)(σ̄Γ

i ) (1)

2 To homogeneously model a state, the current program location (method
and statement) is the top of the stack.
3 The first one in the case of mua being recursive.
4 We use “to free” or “to collect” interchangeably.

Note that, if Γ is more efficient than Γ̂, then peakΓ(σ̄) ≤
peakΓ̂(σ̄), for all σ̄ ∈ Σmua, for all Γ.

3.4 Peak in scoped-memory management
We assume there is a scoped-memory manager that reclaims mem-
ory when methods return. It is only allowed to collect dead objects
created during the execution of the method (and the methods it tran-
sitively calls). Objects created in an outer scope cannot be collected
by the current method, but only reclaimed by its ancestors. Objects
are placed in regions associated with methods. Objects in a region
can point to objects in the same region or a parent one correspond-
ing to an ancestor method in the call stack. This scoping rule can
be satisfied by inferring regions at compile-time (e.g.,[26, 25]).

Let r ⊆ O be a region. We assume every object is assigned
to a region and there is one (possibly empty) region per method
occurrence in the call stack. For any σ ∈ Σ, rst(σ) is the region
stack of σ. There is a one to one correspondence between call
stack and regions stack. That is, one (possibly empty) region per
method occurrence in the call stack. The set of nodes of the heap
is a disjoint union of regions. A region-based memory manager Γ
eliminates the region on top of the region stack on method return.
To ensure that only dead objects are removed, the assignment of
new objects into regions is done in such a way that on the return
of the method on the top of the stack, all objects in the top region
are dead. This holds because inter-region references comply with
scoping rules. From Eq. (1) and the above, it follows that:

peakΓ(σ̄) = max
i

∑
1≤k≤|cst(σ̄i)|

usedh(σ̄)(rstk(σ̄Γ
i ))

where k is a position in the call stack and rstk its associated region.
Notice that under this memory model that new objects are either

allocated in regions created after the observed mua invocation or
they are allocated in regions already stacked when that mua invo-
cation occurs. Furthermore, new regions consist integrally of new
objects and are the only regions that may be popped in the period
of calculation of peak. Old regions may only grow and they do that
by incorporating new objects which lifetimes exceed mua invoca-
tion lifetime-time. Thus, we are interested in distinguishing control
stacks and regions preceding the execution of mua from the ones
involved in its execution since they satisfy different properties. Re-
call that for all σ ∈ Σ, cst(σ) = cst.(mua, n).cst′, mua 6∈ cst.
Hereinafter, cst↓(σ) denotes cst, cst↑(σ) denotes (mua, n).cst′,
rst↓(σ) (resp., v↓(σ)) and rst↑(σ) (resp., v↑(σ)) denote the corre-
sponding region (resp., data-value) stacks. Observe that, for all i, j,
cst↓(σ̄i) = cst↓(σ̄j).

For all i, Γ ensures h(σ̄) ∩ rst↑(σ̄Γ
i ) = ∅ and h(σ̄) ⊆ rst↓(σ̄Γ

i ).
Therefore, we can split the above equation to distinguish the re-
gions created by the execution of the mua from the regions already
created when mua is invoked.

peakΓ(σ̄) = peak↓Γ(σ̄) + peak↑Γ(σ̄) (2)

where

peak↓Γ(σ̄) = max
i

∑
1≤k≤|cst↓(σ̄i)|

usedh(σ̄)(rst↓k(σ̄Γ
i )) (3)

peak↑Γ(σ̄) = max
i

∑
1≤k≤|cst↑(σ̄i)|

size(rst↑k(σ̄Γ
i ))) (4)

with size(r) =
∑
o∈r size(o). Notice in that in Eq. 4 we replace

used by the sum of the sizes of all objects in the region. This
is because regions created since mua only contain newly created
objects (i.e. h(σ̄) ∩ rst↑(σ̄Γ

i ) = ∅). In contrast, regions existing
prior to (the first call to) mua contain objects created since mua
and objects created before (i.e. h(σ̄) ⊆ rst↓(σ̄Γ

i )).



The rest of this paper is devoted to develop a computational
technique to approximate peak↑Γ(σ̄) and peak↓Γ(σ̄).

4. Computing peak
In this section we sketch our technique to obtain a (static) para-
metric prediction of the peak consumption of a method under out
scoped-memory management. We will start from the right-hand
side of Eq. 4 which depends on program states and apply a series
of approximation steps to obtain an inequality which only depends
on the parameters Pmua and the subgraph CGmua of the call graph
rooted at the method under analysis mua.

Σ can be partitioned according to call chains in CCH: σ, σ′ ∈ Σ,
are in the same class iff cst(σ) ≡ cst(σ′). Indeed, a class is
determined by a call chain cch, that is, σ is in the class of cch iff
cst(σ) ≡ cch. Besides, cst↑(σ) ≡ cch for some cch ∈ CCHmua.

Then, from Eq. 4 it follows that:

peak↑Γ(σ̄) = max
cch∈CCHmua

max
i st.

cch≡cst↑(σ̄i)

∑
1≤k≤|cch|

size(rst↑k(σ̄Γ
i )))

The right-hand side of this equation can be over-approximated
by summing up the maximum region sizes along ρσ̄

peak↑Γ(σ̄) ≤ max
cch∈CCHmua

∑
1≤k≤|cch|

max
i st.

cch≡cst↑(σ̄i)

size(rst↑k(σ̄Γ
i )))

and then, by considering a partition for each stack-depth: σ, σ′ ∈ Σ
are in the same class for depth k, iff cst↑(σ) ≡k cst↑(σ′). Thus:

peak↑Γ(σ̄) ≤ max
cch∈CCHmua

∑
1≤k≤|cch|

max
i st.

cch≡kcst↑(σ̄i))

size(rst↑k(σ̄Γ
i ))))

It follows that computing an over-approximation of the peak re-
duces to computing maximum region sizes.

4.1 Approximating region sizes
Given a method m ∈ M, let rsizem(Pm) be a function that
over-approximates the size of any region of m: for all σ, k, such
that mk(σ) = m, size(rstk(σ)) ≤ rsizem(vk(σ)(Pm)). Hence,
we can over-approximate the previous inequality by replacing
size(rst↑k(σ̄Γ

i )) (which depends on states) by rsizem(Pm) (which
only depends on m’s parameters):

peak↑Γ(σ̄) ≤ max
cch∈CCHmua

∑
1≤k≤|cch|

max
i st.

cch≡kcst↑(σ̄i)

rsizem(v↑k(σ̄i)(Pm)) (5)

where m = cchk. Since v↑k(σ̄Γ
i ) = v↑k(σ̄i) this inequality does

not depend on Γ.
rsizem(Pm) can be computed, in may cases, using [7] or it may

be specified by the developer. For m ∈ M, let A be the set of
new statements reachable from m along a call chain in CCHm.
Any region associated with m is composed of objects created by a
subsetRm ⊆ A5. [7] constructs a polynomial over-approximating
(in terms of Pm) the number of times each α ∈ Rm could be
executed in a run from m.

Example In our running example:

Rm0(this, h) = Rm4(this, v) = {}
Rm1(this) = {m1.3, m1.5.m3.7, m1.5.m3.10.m4.13}

Rm2(this, k2) = {m2.6.m3.7, m1.6.m3.10.m4.13}
Rm3(this, n) = {m3.8, m3.10.m4.12}

5Rm can be computed using region synthesis techniques like [26].

and [7] gives:
rsizem0(this, h) = rsizem4(this, v) = 0

rsizem1(this) = size(B[])this.mc

+(size(B[]) + size(B))(
1

2
this.mc2 +

1

2
this.mc)

rsizem2(this, k2) = (size(B[]) + size(B))k2

rsizem3(this, n) = size(N) + size(N)n

where size(C) is the size of objects of class C.

4.2 Approximating maximum region sizes
Eq. 5 still relies on σ̄Γ

i to determine a valuation of Pm when
evaluating rsizem(Pm). Observe that in Eq. 5 regions are classified
by call-stack prefixes and each element in the sum corresponds to
the maximum size of a region over all states matching the call-
stack. Data-values of any σ ∈ Σ, with cst(σ) ≡ cch, can be
over-approximated by an invariant Icch

mua binding Pmua with the
parameters of all methods in cch. In particular, such a binding
invariant can be used to constrain the calling context of m, that
is, the values of Pm in terms of Pmua. Binding invariants can be
obtained, for instance, from local program invariants as in [7].

Example A binding invariant Im0.1.m1.5.m3
mua in our example is

{thism1 = h, 1 ≤ i ≤ thism1.mc, n = i} which can be simpli-
fied as {1 ≤ n ≤ h.mc}

For cch = cst.m ∈ CCHmua, the maximum value of rsizem(Pm)
in all σ with cst.m ≡k cst↑(σ) for some k, can be over-approxi-
mated by its maximum value over a binding invariant Icst.m

mua . Now,
let:

maxrsizecst.m
mua (Pmua)

M
= Maximize rsizem(Pm) (6)

sbj.to Icst.m
mua (Pmua, Pm,W )

where W are local variables appearing in methods in cst. Since
a binding invariant is a conservative approximation of the set of
potential states, it follows that

max
i st.

cch≡kcst(σ̄i)

rsizem(v↑k(σ̄i))(Pm)) ≤ maxrsizecch[1..k]
mua (v↑1(σ̄)(Pmua))

We define:

mem↑mua(Pmua)
M
= max

cch∈CCHmua

∑
1≤k≤|cch|

maxrsizecch[1..k]
mua (Pmua) (7)

Thus, we can prove by construction that:

Lemma 1. For all Γ and σ̄ ∈ Σmua,

peak↑Γ(σ̄) ≤ mem↑mua(v↑1(σ̄)(Pmua)).

Sec.5 develops an effective procedure to compute maxrsize.

Example 1 Table 1 shows maxrsizecch
m0 for the example of Fig. 1.

Since that every call chain is a prefix of m0.1.m1.5.m3.10.m4
or m0.2.m2.6.m3.10.m4 it suffices to consider the sum only for
these two call chains. Therefore, we have that:

mem↑m0(this, h) = max{(size(B[]) + size(B))(
1

2
h.mc2 +

1

2
h.mc)

+size(B[])h.mc + size(N)(1 + h.mc),

(size(B[]) + size(B))3h.mc + size(N)(1 + 3h.mc)}
Assume, for simplicity, that size(C) = 1 for all C. Then:

mem↑m0(this, h) =

= max{h.mc2 + 2h.mc + 1 + h.mc, 6h.mc + 1 + 3h.mc}
= 1 + 3h.mc + max{h.mc2, 6h.mc}

= 1 + 3h.mc +

{
h.mc2 if h.mc < 0 ∨ h.mc > 6
6h.mc if 0 ≤ h.mc ≤ 6



Table 1. maxrsize for the running example.
cst.m Icst.m

m0 maxrsizecst.m
m0 (this, h)

m0 true 0

m0.1.m1 {thism1 = h} (size(B[])+ size(B)).( 1
2 h.mc2 + 1

2 h.mc)+
size(B[])h.mc

m0.1.m1.5.m3 {h.mc ≥ 1, thism1 = h, 1 ≤ i ≤ thism1.mc, n = i} size(N) + size(N)h.mc

m0.1.m1.5.m3.10.m4 {h.mc ≥ 1, thism1 = h, 1 ≤ i ≤ thism1.mc, n = i, 1 ≤ j ≤ n, v = j} 0

m0.2.m2 {k2 = 3h.mc} (size(B[]) + size(B))3h.mc

m0.2.m2.6.m3 {k2 = 3h.mc, n = k2} size(N) + size(N)3h.mc

m0.2.m2.6.m3.10.m4 {h.mc ≥ 1, k2 = 2h.mc, n = k2, 1 ≤ j ≤ n, thism4 = l, v = j} 0

Fig. 4 shows that mem↑ (dotted light gray line) is an upper-bound
of the actual memory requirements of the example of Fig. 1 (dark
solid line). It also shows how regions are created when methods
are invoked and released when they return. Light gray bars depict
rsizem1, dark gray bars rsizem3, and the others rsizem2. Notice
that, in fact, mem↑ is in this case a precise approximation of the
requirements using a region-based memory manager. It also shows
that once maxrsize is computed (dotted red rectangles on the left
figure) the number of expressions to compare (maximums opera-
tions) is finite and related to the number of paths in CG.

Example of dynamic binding The approach deals with polymor-
phic method calls because they are captured by a conservative call
graph. Fig. 5 shows a small fragment of code that performs a poly-

class Test{
int n;
void m(A a){

1: for(i=0;i<n<i++){
2: a.f(i);
3: b = new B();

}
}

}

class A1 extends A {
void f(int p){
1: a = new C();
}

}
class A2 extends A{

void f(int p){
1:a = new D();

}
}

Figure 5. Example of inheritance

morphic call. A call graph for this program includes call chains
test.m.2.A1.f.1 and test.m.2.A2.f.1. The technique “merges”
these branches by applying a maximum operation between them.
Thus:
mem↑m(this, a) = rsizem(this.n) + max{maxrsizetest.m.2.A1.f.1

m ,

maxrsizetest.m.2.A2.f.1
m }

= this.n ∗ size(B) + max{size(C), size(D)}

where {0 ≤ i < this.n} is the binding invariant of both call
chains.

Example 3 Eq. 7 introduces an additional source of over approx-
imation by adding the maximum of each m-region along a call
chain. However, it can be the case that two regions cannot both
reach the maximum size at the same time. Consider the example
in Fig. 6 assuming that N ≤ 10. The call chains in this example
rooted at m1 are m1.2.m2 and m1.2.m2.5.m3.

void m1(int N){
1:for(h=1;h<=N;h++)
2: m2(h);
}

void m2(int k){
3:B[] b = new B[11-k];
4:for(j=1;j<=k;j++)
5: m3(j);
}

void m3(int c){
6:for(i=1;i<=2*c;

i++)
7: A a=new A();
}

Figure 6. Over-approximation due to Eq. 7.

maxrsizem1
m1 = 0 because m1 does not capture any object. m2-

region size depends on the expression 11−k (line 3). It means that

its maximum size is reached when k = 1. Thus, the maximumm2-
region when constrained by m1.2.m2 is maxrsizem1.2.m2

m1 (N) =
10 obtained by assigning h = 1. On the other hand, m3-region
size is proportional to the value of c. However, the variable c
reaches its maximum value when j does. This is exactly when
j = k being the maximum value of k reached when h = n.
Thus, maxrsizem1.2.m2.5.m3

m1 (N) = 2N and is obtained assigning
h 7→ N, k 7→ h, j 7→ k, c 7→ j. However, as we have seen, the
assignment h 7→ N does not maximize the size of m2-regions.
Thus, both situations cannot happen at the same time and adding
the resulting maxrsize expressions leads to an over-approximation.
This problem is shown graphically in Fig. 7.

Figure 7. Over-approximation due to Eq. 7

4.3 Computing peak↓
So far, we have presented a technique to over-approximate peak↑
which corresponds to the maximum amount of memory occupied
by regions created since mua. However there may be objects that
need to be allocated in regions that exist before the invocation of
mua. This part of the equation is modeled by peak↓. We know
the size of a region monotonically increases until the region is re-
moved. In this case, pre-mua regions are not collected during the
observed executions. Thus, we just need to know how many ob-
jects will be associated to pre-mua regions during mua execution.
To deal with this situation we introduce a new function denoted
mem↓m which yields an over-approximation, in terms of Pm, of
the amount of dynamic memory allocated by objects created dur-
ing the execution of m that cannot be released when m terminates,
meaning that they have to be allocated in outer scopes. mem↓m
provides useful information to callers of m as they must consider
that the call to m will require some additional space of their own
regions. A technique to automatically infer the amount of memory
that escapes a method can be found in [7]. In our example no object
escapes m0 meaning that mem↓m0(this, h) = 0.

Observe that, to approximate peak↓(σ̄), we only need to take
into account the amount of memory escaping mua as escape infor-
mation is absorbent. By absorbent we mean that any object escap-
ing the scope of a methodm′, transitively called bym, is eventually
captured by some method in the call stack m. . .m′.
Therefore, mem↓ has (by definition) the following property:

Lemma 2. For all Γ and σ̄ ∈ Σmua,

peak↓Γ(σ̄) ≤ mem↓mua(v↑1(σ̄)(Pmua)).



Figure 4. Ideal, rsize, and mem↑ for m0(this, h) (h.mc = 3,left) and m0(this, h) (h.mc = 7, right).

Finally, we can prove using lemmas 1 and 2:

Theorem 1. For all Γ and σ̄ ∈ Σmua,

peakΓ(σ̄) ≤ [mem↑mua + mem↓mua](v↑1(σ̄)(Pmua)).

5. Computing maxrsize and mem↑
The definition of maxrsize (Eq. 6) formulates a non-linear maxi-
mization problem, where rsize represents the input and the binding
invariant for the control stack represents the restriction. The solu-
tion of Eq. 6 is an expression in terms of Pmua. Since our goal is to
avoid expensive runtime computations, we need to perform off-line
reduction as much as possible at compile time. Off-line calcula-
tion also means that the problem must be solved symbolically. As
a consequence, it is not possible to resort to non-linear numerical
optimization.

5.1 Computing maxrsize

Recall that our original definition of rsizem admits parameters of
any type (in particular objects). To apply the technique that fol-
lows, we assume that rsizem is actually a polynomial evaluated
on integer values, together with a mapping from path expressions
rooted at Pm to the actual variables in the polynomial. For in-
stance: rsizem(p1, p2) = p1.a.length+p1.b.val∗p1.a.length+
p2.size() would be replaced by rsize′m(p11, p12, p21) = p11 +
p12 ∗ p11 + p21 where p11 = p1.a.length, p12 = p1.b.val and
p21 = p2.size(). Something similar is done for linear invariants
which also require variables of integer type.

Thus, if rsizem is expressed as a polynomial (which is the case
if it is computed using [7]) and binding invariants are expressed
using linear constraints we can resort to [13] which proposes an
extension of Bernstein expansion for symbolically bounding the
range of a polynomial over a linear domain. The idea is as follows:
Bernstein polynomials form a basis for the space of polynomials,
such that the coefficients of a polynomial in Bernstein basis give
minimum and maximum bounds on the polynomial values. Here,
we do not go into the details, which can be found in [14]. Let
~x = (x1, . . . , xk) be a vector of variables, and ~p = (p1, . . . , pn) a
vector of parameters. Given a polynomial φ ∈ Q[~x], and a convex
polytope I ∈ Q|~x×~p|, there is a function

Ber : Q[~x]×Q|~x×~p| 7→ 2Q|~p|×2Q[~p]

that yields a set {(Di, Ci)}i∈[1,l] where Di ∈ Q|~p| is a linear
domain and Ci ⊆ Q[~p] is a set of “candidate” polynomials such
that, for all p ∈ Q|~p|:

max{φ(x) | I(p, x)} ≤

 max{q(p) ∈ C1} if D1(p)
...
max{q(p) ∈ Cl} if Dl(p)

Example Applying Bernstein to φ(n) = n2 − 1 for the polytope
I(P1, P2, n, i) = {1 ≤ i ≤ P1 + P2, i ≤ 3P2, n = i} yields the
following result:

D1: {2P2 ≥ P1} C1: {(P1 + P2)2 − 1, P2 + P1 − 1}
D2: {2P2 ≤ P1} C2: {9P 2

2 − 1}

Thus, we compute maxrsizemua by applying the Bernstein ex-
pansion to rsizecst.m

mua , constrained by a linear binding invariant
Icst.m

mua , with parameters Pmua. That is:

maxrsizecst.m
mua (Pmua) =

 max{q(Pmua) ∈ C1} if D1(Pmua)
...
max{q(Pmua) ∈ Cl} if Dl(Pmua)

where {Ci, Di}i=1..l = Ber(rsizem, Icst.m
mua ).

Example Table 2 shows the results for the example in Fig. 1.

Table 2. Computing the function maxrsize using Bernstein basis

Ber(rsizem3, Im0
m0.1.m1.5.m3) = {(h mc ≥ 1; h mc + 1), (h mc < 1; 0)}

→ maxrsizem0.1.m1.5.m3
m0 (h mc) = h mc if ≥ 1, 0 otherwise

Ber(rsizem3, Im0
m0.2.m2.6.m3) = {(true, 3h mc + 1)}

→ maxrsizem0.2.m2.6.m3
m0 (h mc) = 3h mc + 1

Ber(rsizem1, Im0
m0.1.m1) = {(true; h mc2 + 2h mc)}

→ maxrsizem0.1.m1
m0 (h mc) = h mc2 + 2h mc

Ber(rsizem2, Im0
m0.2.m2) = {(true; 6h mc)}

→ maxrsizem0.2.m2
m0 (h mc) = 6h mc

5.2 Evaluating mem↑
Recall that mem↑mua (Eq. 7) is basically a comparison between
values to choose the largest one. Here we present an alternative
definition of mem↑ where instead of comparing all potential call
chains we recursively generate an evaluation tree that gets the same
results: mem↑mua = mem↑mua

mua where

mem↑cst.mmua = maxrsizecst.m
mua + max

(m,l,mi)∈Emua

mem↑cst.m.l.mi
mua (8)

where Emua is the set of edges of the call graph rooted at mua. Note
that, if there is no cycle in CG with reachable object allocations then
Eq. 8 yields a finite evaluation tree (see next section to see how to
deal with some recursion patterns). Evaluation trees are interme-
diate representations of code that need to be executed at runtime
on actual mua parameters to get the actual bound. Evaluation trees
will enable symbolic compile-time manipulation in order to reduce
the runtime effort for evaluating peak-consumption expressions.

An evaluation tree for our example is presented in Fig. 8. The
tree has a direct relation with the application call graph:max nodes



Figure 8. Evaluation tree of mem↑m0
m0 and its correlation with the

application (unfolded) call graph

are associated with branches in the call graph (i.e. independent re-
gions); sum nodes are related with adjacencies in the call graph
(i.e. regions that can live at the same time); leaves are associated
with each node of the unfolded call graph (i.e. potential memory
regions) by using maxrsize as the operation that yields the largest
region size. To model the output of Ber for maxrsize evaluation,
trees feature a case node (not shown in Fig. 8) which provides
a more general construction and models a set of pairs (condition,
evaluation-tree). Evaluation trees can be easily evaluated at run-
time. Nevertheless, reductions can be done at compile-time, for in-
stance, by applying powerful symbolic techniques for polynomial
manipulation or by assuming some loss of precision of the upper-
bounds. Details can be found in [17].
Finally, evaluation trees are translated into Java code to be executed
at runtime. Assuming the number of domains and candidates is
fixed, in the worst case, the number of evaluations is bounded by
the number of branches of the call graph (i.e., the number of edges
of a compacted version of the call graph). In practice the size of
the evaluation tree is much smaller than the call graph, since only
methods with non-null regions are considered and many of the
comparisons can be solved off-line.

6. Validation
One possible context for peak consumption analysis is a tool pro-
ducing time- and memory-predictable Java code out of conven-
tional Java code [17]. In this setting our technique provides spec-
ifications of memory requirements necessary to guarantee proper
execution. Thus, the technique presented in this paper has been in-
tegrated into the tool developed in [7]. That tool is able to automat-
ically analyze sequential Java programs and to synthesize memory
regions together with region sizes. Currently [7] does not handle
automatically memory-consuming recursion requiring some man-
ual intervention for those cases.

Details about the prototype tool can be found in [17]. One of
the most important components is the one that solves the non-
linear symbolic maximization problem. We have implemented the
Bernstein transformation over multivaluated polyhedra following
the approach presented by Clauss in [13]. We use Daikon [16] to
infer local invariants6. We instrument the application in order to
guide Daikon in the generation of invariants. An important role of
the tool is the identification of the variables and path expressions
that have to appear in the invariant (length of arrays and strings,
size of collections, instance and static fields, etc. [17]). The tool
also tries to obtain invariants for common iterations patterns such
as iterators. Once we obtain invariants using Daikon or by other
means (e.g. manually or by static analysis) we generate binding
invariants by joining local invariants with the caller–callee binding

6 Since Daikon produces “likely” invariants, we check them to ensure they
are correct.

information about call chains which are generated using the call
graph.

6.1 Experimentation
The initial experimentation were carried out using the JOlden [8]
benchmarks. As far as we know only Chin et al. [11] used well
known benchmarks (JOlden) for their memory usage verification
technique and most related techniques have been tested just using
ad-hoc examples. It is worth mentioning that these are classical
benchmarks and they are not biased towards embedded and loop
intensive applications which were the target application classes we
had in mind when we devised the technique.

We automatically transform each application into a region-
based one and use [7] to compute region sizes. Then, our new
technique comes into play. Table 3 shows the computed peak ex-
pressions, the total allocation without a GC (as computed using [7])
and the number of non-empty regions. We also include the actual
peak consumption (expressed in #objects) using the region based
version of the application compared with the estimations obtained
by evaluating the polynomials and the relative error ((#Objs - Esti-
mation)/Estimation). TR is the time in seconds (Pentium 4, 3Ghz,
2GB RAM) corresponding to the region inference and transforma-
tion phase:(1) Escape analysis, (2) Region inference, (3) program
instrumentation, (4) binary code generation using GCJ. TM is the
time for computing region sizes:(1) find creation sites, and com-
pute (2) control-state invariants (it also includes call graph com-
putation), (3) inductive variables, and (4) Ehrhart polynomials [7].
Finally TB is the time to compute the peak memory requirements.
In all cases we measure the peak consumption of the main method7.

In these benchmarks the accuracy of the results is more sensi-
tive to the precision of region inference and region sizes than to the
modeling of the peak computation itself. This is because only few
regions are active at the same time and most of the objects are allo-
cated in the main method’s region or in methods called only once.
This is the reason why the cost of TB was negligible: few regions
and simple binding invariants. It also explains why computed peak
expressions and expressions obtained without considering GC are
similar in MST, Em3d, Perimeter and TreeAdd.

BiSort is an interesting example. It has a recursive method
inOrder which prints a tree. We slightly adapt it by creating
the method print to capture objects created at inOrder in a
separated region. The region print is allocated and deallocated
at each iteration making the memory required to run inOrder a
fixed value. In this way it follows a typical pattern where recursion
is used to traverse structures and claimed memory is used and
released at each invocation, avoiding accumulating unnecessarily
data in the heap. In those cases, no matter how many times the
call graph cycle is unrolled in the call stack, there is at most one
non-null region and region-size parameters can be bounded using a
binding invariant that holds no matter the number of unrolls (in this
example the region size is fixed). For such a case an extension of
the technique iw used. Basically, it by-passes strongly-connected
components of the CG made of methods with null regions and
calculates a widened binding invariant for reachable allocating
methods. Another alternative to deal with recursive methods consist
in replacing the associated CG subgraph with a peak memory-
requirement specification for it. For instance, we can specify the
peak consumption for the subgraph formed by inOrder and print
as 1, obtaining the same results. Moreover, if we had not created
print, the peak specification for inOrder would have been (s−1)
leading to a peak consumption of 2s + 3 (i.e. peakmain(s) =
5+(s−1)+(s−1)). This expression has to do with a less efficient

7 The method parseCmdLine parses the command line arguments and
stores the actual value of the parameters in static variables of the main class



Table 3. Experimental results
App mem↑main + mem↓main No GC #Regs Param. #Objs Estimation Err% Time (secs)

TR TM TB
MST -v nv

9
4 nv2+3nv+5+max{nv−1, 2} 9

4 nv2 + 4nv + 6 3
10 253 269 7% 16.03 26.04 0.03
100 22703 22904 1%
1000 2252003 2254004 0%

Em3d
6n.d + 2n + 14 + max{6, 2n} 6n.d + 4n + 20 3

(10,5) 344 354 3% 17.34 30.37 0.05
-n n -d d (100,7) 4604 4614 0%

(1000,8) 52004 52014 0%
BiSort

s + 4 2s + 5 4
10 12 14 17% 17.55 3.21 0.03

-s s -p-m 64 68 70 3%
128 132 134 3%

TSP

2x+2( where x = 2(blog2 cc)+1) 4x + 2 5
10 31 34 10% 14.37 4.17 0.08

-c c -p-m 31 63 66 5%
63 127 130 2%

Power-p-m 32424 1552434 3 - 32421 32424 0% 20.72 5.82 0.02
Health 1

9

(
21 + 51x + 5(x− 1)t

)
( where x = 4l)

2

3

(
8(x− 1) + (5x− 2)t

)
6

(4,1) 1595 1538 4% 27.55 - 0.10
-l -t (5,3) 7510 7080 6%

(6,4) 34588 32791 5%
TreeAdd

x + 6 (where x = 2l) x + 8 2
8 262 259 1% 15.32 - 0.00

-l l -p-m 10 1030 1027 0%
12 4102 4099 0%

BH

13nb2 + 246nb + 37
25s.nb2 + nb(17 +

74s) + 11s + 37
14

10 2385 3797 59% 25.49 - 0.08
-b nb -s s 50 11657 44837 285%

100 156637 23315 563%
Perimeter

x + 11 (where x = 4(l−4)) x + 11 2
13 158042 262155 66% 18.78 - 0.00

-l l -p-m 14 224090 1048587 367%
17 6305002 67108875 964%

Voronoi ∞ ∞ 5 27.76 - -

use of region-based memory based on method granularity and not
with an imprecision of the model or the specification.

TSP has also a recursive method buildTree that builds a tree
which escapes to main region. The recursion follows the pattern
already explained. Power shows a significative difference between
the peak consumption and the total allocation. This is because it
contains a method, which is invoked several times, where all the
objects it creates are allocated in its associated region (nothing es-
capes). Voronoi, Health, TreeAdd, and Perimeter contain not
only recursive method calls but also contain regions whose sizes
grow exponentially w.r.t. some program parameters. For Voronoi
the technique is not able yet to tackle some of its featured recursion
patterns and it yields infinity as a safe over-approximation. Never-
theless, we were able to treat Health, TreeAdd, BH and Permiter
by annotating the program with region sizes (this is why we did not
complete the TM column for them). For BH we perform a minor
refactoring to enable a better behavior for the region-based GC.

7. Related Work
The problem of dynamic memory estimation has been studied for
functional languages in [20, 22, 29]. The work in [20] statically
infers, by typing derivation and linear programming, linear expres-
sions that depend on function parameters. The technique is stated
for functional programs with an explicit deallocation mechanism.
The computed expressions are linear constraints on the sizes of
various parts of data. Our technique is meant to work for Java-
like programs, is better suited for a region-based memory man-
ager and computes non-linear parametric expressions (polynomi-
als). [22] proposed a variant of ML extended with region constructs
[28] together with a type system based on the notion of sized types
[23] (linear constrains), such that well typed programs are proven to
execute within the given memory bounds given as linear constrains.
Although, their work is meant for first-order functional languages,
they also rely on regions to control object deallocation. Unlike us
they neither synthesize memory consumption nor handle non-linear
cases. The technique proposed in [29] consists in, given a function,
constructing a new function that symbolically mimics the memory
allocations of the former. The computed function has to be executed
over a valuation of parameters to obtain a memory bound for that

assignment. Unlike our polynomials, the evaluation of that function
might not terminate, even if the original program does.

For imperative object-oriented languages, solutions have been
proposed in [19, 10, 11, 2, 3, 21, 12]. The technique of [19] manip-
ulates symbolic arithmetic expressions on unknowns that are not
necessarily program variables, but added by the analysis to rep-
resent, for instance, loop iterations. The resulting formula has to
be evaluated on an instantiation of the unknowns left to obtain the
upper-bound. Since the unknowns may not be program inputs, it
is not clear how instances are produced. Also, it seems to be quite
overly pessimistic for programs with dynamically created arrays
whose size depends on loop variables and it does not consider any
memory collection mechanism. [21] presents a type system for
heap analysis with explicit deallocations. Their analysis is based
on an amortized complexity analysis where a potential is assigned
to each datum according to its size and layout. Heap space usage
can then be calculated during the type inference based on the an-
notated potential for each input. They do not present an inference
method for heap consumption. The method proposed in [10, 11]
relies on a type system and type annotations, similar to [22]. It stat-
ically checks whether size annotations (Presburger’s formulas) are
verified. It is therefore up to the programmer to state the size con-
straints, which are indeed linear. Their type system allows alias-
ing and object deallocation (dispose) annotations. Our technique
does not allow such annotations and indeed our memory model is
more restricted. But as a counterpart we can synthesize non-linear
bounds. In this same conference [12], they propose an extension
of this technique which infers upper bounds of heap and stack us-
age provided they can be expressed as Presburger’s formulas. The
analysis is path sensitive in the sense that memory consumption
expressions may have guards that can capture a more precise sym-
bolic condition for each memory use/bound. For recursive methods
or loops they build an abstract definition in constraint form that
may be recursive and then solve it using a fix point analysis. In
our case we try to avoid a fix point computation by using loop in-
variants for loops or user provided annotations. Recently Albert et
al. [2] propose a technique for parametric cost analysis for sequen-
tial Java code. The code is translated to a recursive representation.
Then, they infer size relations which are similar to our linear in-



variants. Using the size relation, and the recursive program rep-
resentation they compute cost relations which are set of recurrent
equation in term of input parameters. Applied to memory consump-
tion their bounds are not limited to polynomials. However, solving
recurrence equations is not a trivial task and is not always possible
to obtain closed form solutions for a set of recurrence equations.
Object deallocation is not considered. In [3] they propose an ex-
tension where object deallocation is handled, similarly to ours, by
approximating objects lifetime using escape analysis and deallocat-
ing at the end of method execution. The paper presents some initial
experimentation where object deallocation is not considered.

8. Conclusions and Future work
We presented a novel technique to compute non-linear paramet-
ric upper-bounds of the amount of dynamic memory required by
a method. It was meant for region-based dynamic memory man-
agement, when regions are directly associated with methods, but
it can be safely used to predict memory requirements for memory
management mechanisms that free memory by demand.

The technique is fed by an application call graph, enriched with
binding invariant information to constraint calling contexts and
parametric specifications of regions sizes. These inputs can be ob-
tained by either the tool developed in [7], using another tool, or by
processing user-provided annotations. The output is a parametric
specification of the memory required to run a method (or program).
The output is given in the form of evaluation trees containing poly-
nomials that can be easily translated to code evaluable in runtime.
The size of the evaluation trees are known at compile time and can
be reduced either using symbolic mathematical tools or by compro-
mising some accuracy of run-time calculations.

The accuracy of the technique relies on several factors: the
precision of its inputs (region sizes and invariants), the program
structure that may allow or disallow two active regions get its
maximum size at the same time, the precision of the Bernstein
approximation and reductions applied to the evaluation tree. More
benchmarks would be needed to assess its precision, but we think
it is a promising approach.

The technique does not deal in the general case with memory-
consuming recursions and, although we believe that this restriction
is not an impediment for embedded systems, we are working on
covering some other common cases. For more general patterns of
recursion one could resort to techniques similar to regular model
checking [1] or introducing a fresh variable to model the number
of recursive invocations (that variable should be bounded by an ex-
pression over mua parameters). In any case, the presented tech-
nique could be slightly adapted to leverage on user-provided peak
memory-requirements. Thus, a specification could replace recur-
sive methods. Moreover, we also believe that it is possible to devise
a technique integrating our analysis together with those mentioned
type-checking based ones which are better suited for more com-
plex or recursive data structures [12]. The approach would use type
checked annotations for data container classes (like the ones pro-
vided by standard libraries) and our inference approach for loop
intensive applications on top of those verified libraries.
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[3] E. Albert, S. Genaim, M. Gómez-Zamalloa. Heap space analysis for
java bytecode. ISMM’07, ACM 2007.

[4] D. Bacon, P. Cheng, D. Grove. Garbage collection for embedded
systems. EMSOFT’04, ACM 2004.

[5] G. Barthe, M. Pavlova, G. Schneider. Precise analysis of memory
consumption using program logics. SEFM’05. IEEE 2005.

[6] G. Bollella, J. Gosling. The Real-Time Specification for Java.
Addison-Wesley Longman Publishing Co., Inc., 2000.

[7] V. Braberman, D. Garbervetsky, S. Yovine. A static analysis
for synthesizing parametric specifications of dynamic memory
consumption. JOT 5(5):31–58, 2006.

[8] B. Cahoon, K. S. McKinley. Data flow analysis for software
prefetching linked data structures in Java. PACT’01, IEEE 2001.

[9] S. Cherem, R. Rugina. Region analysis and transformation for Java
programs. ISMM’04, ACM 2004.

[10] W. Chin, S. Khoo, S. Qin, C. Popeea, H. Nguyen. Verifying safety
policies with size properties and alias controls. ICSE’05, ACM 2005.

[11] W. Chin, H. H. Nguyen, S. Qin, M. Rinard. Memory usage
verification for oo programs. SAS’05, LNCS 3672, 2005.

[12] W.N. Chin, H.H. Nguyen, C. Popeea, S. Qin Analysing memory
resource bounds for low-level programs. In ISMM 08, 2008.

[13] Ph. Clauss, I. Tchoupaeva. A symbolic approach to Bernstein
expansion for program analysis and optimization. CC’04, 2004.

[14] Ph. Clauss, F. Fernández, D. Garbervetsky, S. Verdoolaege. Symbolic
polynomial maximization over convex sets and its application to
memory requirement estimation. TR06-04, Univ. L. Pasteur, 2006.

[15] D. Detlefs. A hard look at hard real-time garbage collection.
ISORC’04, IEEE 2004.

[16] M. D. Ernst, J. H. Perkins, P. J. Guo, S. McCamant, C. Pacheco, M.
S. Tschantz, C. Xiao. The Daikon system for dynamic detection of
likely invariants. Sci. Comput. Program. 69(1-3): 35-45, 2007.

[17] D. Garbervetsky. Parametric specification of dymamic memory
utilization. Ph.D Thesis, DC, FCEyN, UBA, November 2007.

[18] D. Gay, A. Aiken.Language support for regions.PLDI’01,ACM 2001.

[19] O. Gheorghioiu. Statically determining memory consumption of
real-time java threads. MEng, MIT, 2002.

[20] M. Hofman, S. Jost. Static prediction of heap usage for first-order
functional programs. POPL’03, ACM 2003.

[21] M. Hofman, S. Jost. Type-based amortised heap-space analysis. In
ESOP ’06. 2006.

[22] J. Hughes, L. Pareto. Recursion and dynamic data-structures in
bounded space: towards embedded ML programming. ICFP’99,
SIGPLAN Notices 34(9), ACM 1999.

[23] J. Hughes, L. Pareto, A. Sabry. Proving the correctness of reactive
systems using sized types. POPL’96, ACM 1996.

[24] V. Sundaresan, P. Lam, E. Gagnon, R. Vallée-Rai, L. Hendren, P. Co.
Soot: A java optimization framework. CASCON’99, IBM 1999.

[25] G. Salagnac, Ch. Rippert, S. Yovine. Semi-automatic region-
based memory management for real-time java embedded systems.
RTCSA’07, IEEE 2007.

[26] G. Salagnac, S. Yovine, D. Garbervetsky. Fast escape analysis for
region-based memory management. ENTCS, 131:99–110, 2005.

[27] A. Salcianu, M. Rinard. Pointer and escape analysis for multithreaded
programs. PPoPP’01, SIGPLAN Notices 36(7), ACM 2001.

[28] M. Tofte, J.P. Talpin. Region-based memory management. Inf.
Comput. 132(2):109–176, 1997.

[29] L. Unnikrishnan, S.D. Stoller, Y.A. Liu. Optimized live heap bound
analysis. VMCAI’03, LNCS 2575, 2003.


