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ABSTRACT
Scenario-based specifications are a popular means for de-
scribing intended system behaviour. We aim to facilitate
early analysis of system behaviour and the development of
behaviour models in conjunction with scenarios. In this pa-
per we define a novel scenario-based specification language
with an existential semantics and that supports conditional
specification of behaviour in the form of prechart and main
chart. The language semantics is consistent with existing
informal scenario-based and use-case based approaches to
requirements engineering. The language provides a good fit
with universal live sequence charts as standard existential
live sequence charts do not adequately support conditional
scenarios. In addition, we define a novel synthesis algorithm
that, rather than building arbitrarily one of the many be-
haviour models that satisfy a scenario, constructs a Modal
Transition System (MTS) which characterizes all behaviour
models that conform to the scenario.

Categories and Subject Descriptors
D.2.1 [Software Engineering]: Requirements / Specifica-
tions

General Terms
Design, Algorithms

Keywords
Scenarios, MTS, synthesis, partial behaviour models

1. INTRODUCTION
Operational behavioural models such as Labelled Transi-

tion Systems (LTSs) are convenient formalisms for modelling
and reasoning about system behaviour at the architectural
level. They describe a system as a set of interacting com-
ponents where each component is modelled as a state ma-
chine, and interactions between components occur through
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shared events. These models provide a basis for a wide range
of automated analysis techniques, such as model-checking,
simulation and animation.

One of the serious limitations of behaviour modelling and
analysis is the complexity of building the models in the first
place. Behavioural model construction remains a difficult,
labour-intensive task that requires considerable expertise.
To address this, a wide range of techniques for supporting
(semi-)automated synthesis of behaviour models have been
investigated. In particular, synthesis from scenarios and use
cases (e.g., [9, 16, 6, 1, 18]) has been studied extensively.

Scenario-based specifications such as Message Sequence
Charts (MSCs) [7] describe how system components, the
environment, and users interact in order to provide system
level functionality. Their simplicity and intuitive graphical
representation facilitate stakeholder involvement and make
them popular for requirements elicitation. Synthesis from
scenario-based specifications helps support early analysis,
validation, and incremental elaboration of behaviour models.

A range of scenario description languages and associated
behaviour model synthesis algorithms have been developed.
Languages include features to describe alternative and repet-
itive behaviour, broadcast and multicast, state information,
data values on messages, and symbolic instances. In addi-
tion, features that allow making explicit causality relations
between different behaviours by means of conditional, trig-
gered and preempted behaviour have been studied.

One important semantic variation among approaches is
whether scenarios are interpreted as existential or universal
statements. An existential scenario provides an example of
system behaviour, one that the system-to-be is required to
provide. A universal scenario provides a rule that all sys-
tem behaviour is expected to satisfy. Although typically
each approach is geared to one interpretation or the other,
some languages, notably Live Sequence Charts (LSCs) [6],
provide syntactic and semantic support for both interpreta-
tions. The motivation being that during the requirements
process, there is a progressive shift from existential state-
ments, in the form of examples and use-cases, to universal
statements in the form of declarative properties. A scenario-
based language that supports both interpretations is better
equipped to support this shift.

Despite the variety of existing approaches, no language
and associated synthesis algorithm suitable for describing
conditional existential scenarios exists. Consider the state-
ment“if the user inserts a valid card into the ATM, and then
enters the correct password, she/he shall be able to request
cash and have it dispensed by the ATM”. This statement,
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likely to be provided in the form of a use case, is existential
in that it provides an example of system execution. It also is
conditional in the sense that requesting and obtaining cash
is expected to be possible if the user has inserted a valid
card and input the correct password.

A number of approaches [6, 9, 13] provide syntactic con-
structs for describing conditional or causal relations between
sequences of actions. However, these take on a universal in-
terpretation. For instance, universal LSCs (uLSCs) which
describe conditional behaviour by means of a prechart and
a main chart are interpreted as follows: once the prechart
occurs, the main chart must occur. This is an appropriate
semantics to describe statements such as “when the user’s
has entered an incorrect password three times in a row, the
ATM must retain the user’s card”.

Conditional scenarios with existential semantics provide
a good fit with use case based approaches. Use cases are
typically interpreted existentially and are annotated with
preconditions, for instance use cases for withdrawing cash,
changing PIN and requiring a printed balance of accounts
may all have the same precondition. These use cases are not
mutually exclusive and it is expected that the system shall
provide at least the three functions described by them when
the precondition holds.

In addition, this semantics fits well with scenario-based
elicitation methods (e.g. [17]) that adopt “what-if” ques-
tions in the form of sequences of interactions and elicit some
of the system responses. Each response can be coded with a
conditional existential scenario. A conditional universal sce-
nario may be inappropriate as it may be unknown whether
the response corresponds to mandatory behaviour or is sim-
ply one of the many possible system responses.

In this paper we define a novel scenario-specification lan-
guage which support describing conditional existential sce-
narios as described above. Scenarios are described with a
prechart and a main chart in the style of uLSCs, but are in-
terpreted existentially: when the prechart has occurred, the
system must be able to perform the main chart. We refer to
this new kind of scenario as existential LSCs with precharts
(epLSCs) to distinguish them from the existential scenarios
provided in LSC which do not adequately support descrip-
tion of conditional existential behaviour. The correspon-
dence between epLSCs and uLSC further supports our aim
of providing a uniform framework for moving from examples
to comprehensive descriptions throughout the requirements
processes

In this paper we also define a behaviour model synthesis al-
gorithm for epLSCs. The algorithm constructs modal tran-
sition systems (MTS). MTS are state-based models that can
distinguish the required, possible and proscribed behaviour
of the system-to-be. The MTS synthesised from an epLSC
characterises, through a formal notion of refinement, all the
implementations, modelled as LTS, that satisfy the epLSC.

There are various benefits to synthesising in a compact
and intuitive operational representation all possible LTS of
an epLSC description. Firstly, the bias of arbitrarily select-
ing a specific LTS is avoided. Second, the MTS can be used
for analysing and exploring alternative implementations for
the epLSCs. And thirdly, the MTS can be iteratively re-
fined as new behaviour information elicited. This refine-
ment effectively prunes the set of LTS models described by
the MTS and achieves a more complete characterisation of
the intended system behaviour. Iterative refinement can be

prompted by traditional analysis techniques such as inspec-
tion, animation and model checking. In addition, refinement
can be achieved by merging [15] the MTS with other MTS
resulting from the synthesis from other scenarios (be them
epLSCs or others) and declarative specifications [14].

The rest of the paper is organised as follows. We begin
with background on behaviour models (Section 2) and then
in Section 3 we discuss scenario-based languages and present
a language for conditional existential scenarios. In Sections 4
we present an algorithm for synthesising MTSs from condi-
tional existential scenarios. We then present a case study
(Section 5), discuss our work and compare it to related ap-
proaches in Section 6 to then conclude in Section 7.

2. BACKGROUND
In this section we review behaviour models and fix nota-

tion. We start with the familiar concept of labelled tran-
sition systems (LTSs) which are widely used for modelling
and analysing the behaviour of concurrent and distributed
systems. An LTS is a state transition system where tran-
sitions are labelled with actions. The set of actions of an
LTS is called its communicating alphabet and constitutes the
interactions that the modelled system can have with its en-
vironment. In addition, LTSs can have transitions labelled
with τ , representing actions that are not observable by the
environment. An example LTS is shown in Figure 5. We use
a convention that the initial state is labelled as 0. Other-
wise, the numbers on states are for reference only and have
no semantics. A transition labelled with several actions is
shorthand for a set of transitions, one for each action.

Definition 1. (Labelled Transition System) Let States
be a universal set of states, and Act be the universal set of
observable action labels and Actτ = Act ∪ {τ}. An LTS is
a tuple P = (S, A, Δ, s0), where S ⊆ States is a finite set of
states, A ⊆ Actτ is the set of labels, Δ ⊆ (S × A × S) is a
transition relation, and s0 ∈ S is the initial state. We use
αP = A \ {τ} to denote the communicating alphabet of P .

Modal Transition Systems (MTSs) [11], which allow for
explicit modelling of what is not known, extend LTSs with
an additional set of transitions that model interactions with
the environment that the system cannot be guaranteed to
provide, and equally cannot be guaranteed to prohibit.

Definition 2. (Modal Transition System) An MTS M
is a structure (S, A,Δr, Δp, s0), where Δr ⊆ Δp, (S, A,
Δr, s0) is an LTS representing required transitions of the
system and (S, A, Δp, s0) is an LTS representing possible
(but not necessarily required) transitions. We use αM =
A \ {τ} to denote the communicating alphabet of M . We
use δ to note the universe of MTS.

Every LTS (S, A,Δ, s0) can be embedded into an MTS
(S, A, Δ, Δ, s0). Hence we shall sometimes refer to MTS
with equal set of required and possible transitions as LTS.
We refer to transitions in Δp \ Δr as maybe transitions,
depict them with a question mark following the label, and
adopt the same conventions as for LTS regarding state num-
bers and initial state. An example MTS is shown in Figure 4.

Given an MTS M = (S,A, Δr, Δp, s0) we say M tran-
sitions on � through a required transition to M ′, denoted

M
�−→r M ′, if M ′ = (S, A, Δr, Δp, s′0) and (s0, �, s

′
0) ∈ Δr,
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and M transitions through a possible transition, denoted

M
�−→p M ′, if (s0, �, s

′
0) ∈ Δp. Similarly, for γ ∈ { r, p }

we write M
�̂−→γ M ′ to denote that either M

�−→γ M ′

or � = τ and M = M ′ are true, and we use M
�

=⇒γ M ′

to denote M(
τ−→γ)∗ �−→γ (

τ−→r)
∗M ′. We write M

�−→γ

(resp. M
�

=⇒γ) to denote that there exists an M ′ such

that M
�−→γ M ′ (resp. M

�
=⇒γ M ′). Finally, we use the

natural extension of the above notation to words over A,
for example M

w−→r M ′ with w = �0, . . . , �n denotes that
there exists M0, . . . , Mn such that, M = M0, M ′ = Mn, and

Mi
�i−→r Mi+1 for 0 ≤ i < n.

Weak refinement or simply refinement of MTSs captures
the notion of elaboration of a partial description into a more
comprehensive one, in which some knowledge over the maybe
behaviour has been gained. It can be seen as being a “more
defined than” relation between two partial models. An MTS
N refines M if N preserves all of the required and all of the
proscribed behaviours of M . Alternatively, an MTS N re-
fines M if N can simulate the required behaviour of M , and
M can simulate the possible behaviour of N .

Definition 3. (Refinement) N is a (weak) refinement of
M , written M � N , if αM = αN and (M, N) is contained
in some refinement relation R ⊆ δ×δ for which the following
holds for all � ∈ Actτ :

1. (M
�−→r M ′) =⇒ (∃N ′ · N �̂

=⇒r N ′ ∧ (M ′, N ′) ∈ R)

2. (N
�−→p N ′) =⇒ (∃M ′ · M �̂

=⇒p M ′ ∧ (M ′, N ′) ∈ R)

LTSs that refine an MTS M are complete descriptions of
the system behaviour up to the alphabet of M . We refer
to them as the implementations of M . An MTS can be
thought of as a model that represents the set of LTSs that
implement it. The diversity of the set results from making
different choices on maybe behaviour of the MTS.

Definition 4. (Implementation) We say that an LTS I =
(SI , A,ΔI , i0) is a (weak) implementation of an MTS M =
(SM , A,Δr

M , Δp
M , m0), written M � I, if M � MI with

MI = (SI , A, ΔI , ΔI , i0). We also define the set of imple-
mentations of M as I[M ] = { I LTS | M � I }.

As expected, refinement preserves implementations, mean-
ing that as an MTS is refined, the set of implementations it
characterises is reduced (If M � M ′ then I[M ] ⊇ I[M ′]).

Definition 5. (Hiding) Let M = (S, A, Δr, Δp, s0) be
an MTS and X ⊆ Act be a set of observable actions. M
with the actions of X hidden, denoted M\X, is an MTS

(S, A\X, Δr′
, Δp′

, s0), where Δγ′
with γ ∈ {r, p} is the re-

sult of replacing all (s, �, s′) in Δγ such that � ∈ X with
(s, τ, s′). We use M@X to denote M\(Act\X).

Merging MTSs [15] is the process of combining what is
known from each partial behaviour description; in other
words, it is the construction of an MTS that includes all the
required and all the prohibited behaviours from each MTS,
and is as least refined as possible. Formally, merging MTSs
is the process of finding their minimal common refinement.

Given two MTS M and N , an MCR for them may not
exist, in which case we say that M and N are inconsistent,
or may not be unique [15]. In [4], an algorithm that builds a

Figure 1: An existential live sequence chart (eLSC)

common refinement from consistent MTS is presented. We
refer to this algorithm with the operator +. This algorithm
is known to produce an MCR for the case when M and N
have the same alphabet. For the case of different alphabets,
an adaptation of the algorithm may not always produce an
MCR but in these cases it produces a common refinement
of M and N that approximates it.

3. LIVE SEQUENCE CHARTS REVISITED

3.1 Sequence Charts
Sequence charts are the core of widely accepted notations

for describing scenarios, notably, Message Sequence Charts
(MSC) [7] and UML Interaction Diagrams. The basic syn-
tax, depicted in Figure 1, displays vertical lifelines which
represent component instances involved in the interaction
being described. Sequence charts also depict the interactions
between instance by means of arrows. These interactions,
referred to as messages, can represent synchronous or asyn-
chronous communication between component instances. In
case of the former, the message represents an instantaneous
event on which both instance synchronise on. In case of the
latter, the message represents two instantaneous events: the
event associated with the source of the arrow, the sending
of the message, and the event associated with the target of
the arrow. For simplicity, in this paper we shall assume that
messages describe synchronous communication. The results
described in this paper can be extended straightforwardly if
this assumption is dropped.

Sequence charts are read from top to bottom, meaning
that time is assumed to go top-down. In Figure 1, we de-
pict a scenario in which a customer uses an ATM machine
to withdraw cash. A stakeholder reading through the chart
may say “The customer keys in the password and the ATM
sends customer information to the bank. Then, the bank
verifies the information and the ATM displays a ‘please wait’
message. Once the bank clears the customer, the user re-
quests cash, the ATM gets the customer balance and dis-
penses the cash to the user”.

A sequence chart defines a partial order of events based
on the following rule: an event on a lifeline may occur if
all events further above on the same lifeline have already
occurred. This entails that Figure 1 does not define an order
between events “verifying” and “wait”; consequently these
events may occur in an arbitrary order. We refer to the
set of sequences of events described by a sequence chart B
as its language, written LB . The language of the sequence
chart of Figure 1 has two traces or words: pwd, verify,
wait, verifying, ok, reqCash, getBalance, cash and pwd,
verify, verifying, wait, ok, reqCash, getBalance, cash.
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Figure 2: A universal live sequence chart (uLSC)

3.2 Live Sequence Charts - eLSC and uLSC
Many authors (e.g. [?, 1, 9, 16, 18] have noted the limi-

tations of the core scenario notation described above. The
key issue is the limited expressiveness of one sequence chart.
Extensions have been developed to support sequence chart
composition and provide control flow operations such as in-
terleaving, repetition, concatenation, and choice. In addi-
tion, sequence charts can be annotated with state informa-
tion, data values can enrich message labels, and lifelines may
represent symbolic instances.

Harel et al. [6] point out that the causal relation between
events remains implicit in sequence charts and that it can
be beneficial to distinguish between events that trigger a
scenario from the events that occur in response to the trig-
ger. They also criticise the lack of distinction between uni-
versal and existential behaviour. Accordingly, they define
an scenario-based description language based on sequence
charts called Live Sequence Charts [3]. The core of LSCs,
Constant LSCs [6], consists of two types of charts: Existen-
tial live sequence charts (eLSCs) and universal live sequence
charts (uLSCs).

eLSCs are basic charts depicted in a dotted frame such
as the one in Figure 1. We shall abstractly represent eLSCs
as �(B, Σ) where B is a basic chart and Σ is the scope of
the eLSC. The scope of the the eLSC is a superset of the
message labels that appear in B. We refer to the language
of E = �(B, Σ), written LE as the set of traces that when
restricted to the occurrence of events in the scope results
in a sequence described by B. The intuitive semantics of
an eLSC is that there exists at least one execution of the
system-to-be that corresponds to a trace in LE .

The purpose of including additional labels in the scope
of a LSC is to restrict the occurrence of a particular mes-
sage. For instance, the following sequence pwd, verify,
wait, verifying, ok, reqCash, getBalance, beep, cash, . . .
is part of the language of a eLSC defined by the chart of
Figure 1 with a scope that does not include beep, but would
not be part of the language of the eLSC if beep were added
to its scope. Syntactically, in any type of LSC, the events
that are part of the scope but do not appear in the chart
are depicted with an extra restricts clause as shown at the
bottom of Figure 2.

uLSCs consist of two sequence charts, a prechart and a
main chart where the former is depicted above the latter
(see Figure 2). We represent abstractly uLSCs as �(P, M, Σ)

where P is the prechart and M the main chart. The seman-
tics of a uLSC is that in every execution of the system-to-be,
once projected onto the scope Σ, if the prechart occurs in
the execution, then the main chart must immediately follow.
Note that main chart of a uLSC is depicted in continuous
frame to denote its universal nature in contrast to the dotted
frame of eLSC (see Figure 2).

Consider the uLSC depicted in Figure 2, the language
of its prechart contains one trace: pwd, verify, nok, pwd,
verify, nok, pwd, verify, nok and the language of the main
chart also contains one trace: retainCard. The scope of the
uLSC is extended by the restrict clause and has the events
explicitly appearing in the prechart and main chart in addi-
tion to the message in the restrict clause: {pwd, verify,
nok, retainCard, reqCash, getBalance, cash, ok, wait,
verifying}. An informal interpretation of the uLSC is that
once a user has input the password incorrectly three times
in a row, the user’s card must be retained. An example of a
trace that is not in the language of the uLSC is pwd, verify,
nok, pwd, verify, nok, pwd, verify, nok, pwd, verify, ok,
reqCash, . . ..

We now provide a formal definition of the semantics of
eLSCs and uLSCs. Note that given a word w over an al-
phabet A, w|B with B ⊆ A is the projection of w onto the
alphabet B.

Definition 6. (Semantics of eLSC and uLSC) Given an
infinite word w ∈ Actω we say that,

• w satisfies an eLSC E = �(B, Σ), written w |= E, if
there is a decomposition uvw′ of w such that v|Σ ∈ LB.

• w satisfies an uLSC U = �(P, M, Σ), written w |= U ,
if for every decomposition upw′ of w, if p|Σ ∈ LP then
there is a decomposition mw′′ of w′ such that m|Σ ∈
LM .

An LSC S defines a set of traces given by the words that
satisfy the LSC: LS = {w ∈ Actω · w |= S}. In addition,
given an LTS I with a set of traces LI we say that,

• I satisfies E, written I |= E if LI ∩ LE = ∅
• I satisfies U , written I |= U if LI ⊆ LU

3.3 Existential LSCs with Precharts
In this section we provide a novel scenario-specification

language, existential LSC with precharts which we shall refer
to as epLSCs.

An epLSC consist, similarly to uLSC, of two sequence
charts: a prechart and a main chart. Syntactically, epLSC
differ from uLSC in its main chart appears in a dotted
frame (see Figure 3). We represent abstractly an epLSCs
as �(P, M, Σ) where P is the prechart, M the main chart
and Σ the scope. The intuitive semantics of an epLSC is
that in every execution of the system-to-be projected onto
the scope Σ, if the prechart occurs in the execution, then
there exists an execution from that point on in which the
main chart must follow.

Consider the epLSC depicted in Figure 3 with scope {pwd,
verify, wait, verifying, ok, reqCash, getBalance, cash},
the language of its prechart contains two traces: pwd, verify,
wait, verifying, ok and pwd, verify, wait, verifying, ok.
The language of the main chart has only one trace reqCash,
getBalance, cash. An informal and loose interpretation of
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Figure 3: An existential LSC with prechart (epLSC)

the epLSC is that “once a user has input the password cor-
rectly, he or she shall be able to withdraw cash, but other
behaviour could follow instead”. A universal interpretation
of the same scenario would yield an informal description
along the lines “once a user has input the password cor-
rectly, the system shall allow the user to withdraw cash”. A
eLSC built from the concatenation of the prechart and main
chart would state that “there exists one execution in which
the user inputs correctly the password and then withdraws
cash”. This differs from the epLSC semantics which requires
that after every correct input of a password by a user, the
user must be able to withdraw cash.

Although it is possible to show a trace that conforms to
this epLSC (e.g. pwd, verify, wait, verifying, ok, reqCash,
getBalance, cash or even pwd, verify, wait, verifying, ok,
reqCash, getBalance, beep, cash), an example of a trace
that does not conform to the epLSC cannot be provided. For
instance, a system exhibiting pwd, verify, wait, verifying,
ok, requestOverdraft, checkCreditHistory, reqCash, . . .
does not necessarily violate the epLSC. The key is whether,
once the prechart occurs, the system has at least one exe-
cution from that point on that satisfies the main chart, say
reqCash, getBalance, beep, cash.

The interpretation of epLSCs discussed in the previous
paragraphs requires defining its semantics formally in terms
of a branching structure such as computation trees, or di-
rectly over an LTS, as opposed to defining the semantics
over traces as is the case for uLSCs and eLSCs.

Definition 7. (Semantics of epLSC) An LTS I = (S, A,
Δ, s0) satisfies an epLSC E = �(P, M, Σ), written I |= E if

for all LTS I ′ such that I
up−→ I ′ and p|Σ ∈ LP , then for all

m ∈ LM there exists a word m′ ∈ A∗ such that m′|Σ = m

and I ′ m′−→

4. MTS SYNTHESIS
In this section we define a synthesis algorithm that con-

structs behaviour models in the form of Modal Transition
Systems (MTS) from epLSCs.

In general, the scenario synthesis problem consists in con-
structing a behaviour model that satisfies a given scenario
description. The problem has a number of variants depend-
ing on the scenario language used, the behaviour modeling
formalism chosen as a target of the synthesis, and the var-
ious additional constraints that can be imposed such as in
distributed synthesis (e.g. [16]).

A stronger requirement for the synthesis is that the result-
ing model characterise through some notion of refinement all
the behaviour models that satisfy a given scenario descrip-
tion. A number of techniques that perform such synthesis
have been developed (e.g. [13, 14]).

Characterising in one operational model all behaviour mod-
els that satisfy a given scenario-based description is conve-
nient as the synthesised model can then be evolved inde-
pendently of the scenario description. It can be elaborated
through step-wise refinement with the guarantee that the
resulting, more refined, models will continue to satisfy the
scenarios. Iterative refinement can be prompted by tradi-
tional analysis techniques such as inspection, animation and
model checking.

Note that LTSs are not a good target for our synthesis
approach as there are many of them that satisfy an epLSC.
For instance the LTSs of Figures 5 and 6 satisfy the epLSC
of Figure 3. A synthesis algorithm that builds one or the
other would be making an arbitrary decision.

We now present an algorithm that given an epLSC E with
alphabet ΣR, produces an MTS M that characterises all
LTS that satisfy the scenario, i.e. I@ΣR ∈ I[M ] ⇔ I |= E.
This entails that MTS refinement preserves the semantics of
epLSCs and that MTS merge provides a composition mech-
anisms for epLSC scenarios. In other words, that the syn-
thesis of an MTS from a set of epLSC can be defined as
merging the MTS synthesised from each epLSCs. We first
walk through an example of the algorithm’s output, and
then explain how the algorithm works.

Consider the MTS in Figure 4 synthesised from the epLSC
of Figure 3. States 0 to 4 and state 7 of Figure 4 monitor
the occurrence of all the events in the epLSC’s scope. These
states and their outgoing transitions guarantee that any se-
quence of events in the scope will lead to state 8 as soon as
a trace in the language of the prechart occurs. Note that all
outgoing transition from these states are maybe transitions,
meaning that the intended system behaviour may or may
not exhibit some of these transitions. In fact, a system that
never exhibits the prechart is a valid implementation.

State 8 is reached if and only if a word in the prechart
has just been recognised. From 8 there is a sequence of re-
quired transitions (reqCash, getBalance, and cash) leading
to states 6, 5 and then 0. These transitions ensure that if the
intended system behaviour where to exhibit behaviour lead-
ing to state 8, then it must provide the required transitions
on reqCash, getBalance, and cash. In other words, these
transitions guarantee the occurrence of the existential main
chart. Note, however, that from states 5, 6, and 8 there is
an outgoing transition for each action the epLSC’s scope.
This models the fact that the system-to-be does not have to
satisfy the main chart in every execution that has satisfied
the prechart. Furthermore, on states 5 and 6 a maybe tran-
sition on the unobservable action τ also is present. The τ
transitions are needed because an LTS may have transitions
beyond the scope of the epLSC leading to a point where the
main chart can no longer be satisfied. Indeed, as we shall
see later, a τ transition forgets the obligations contracted
by a previously satisfied prechart. For the case that the
prechart has just occurred, the loop on τ at state 8, ensures
that there continues to exist an execution in which the main
chart happens because the prechart still holds. Finally, it is
important to note that the transitions from 5, 6, and 8 con-
tinue to monitor for (another) occurrence of the prechart.
Hence, outgoing transitions from 5, 6, and 8 on pwd lead to
state 1, while the rest go to state 0.

The MTS in Figure 4 characterises through refinement all
LTS models that satisfy the epLSC of Figure 3. For exam-
ple, the LTS of Figure 6, when restricted to the alphabet of
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Figure 4: MTS synthesised from epLSC in Figure 3

Figure 5: An implementation of MTS in Fig. 4

Figure 6: Another implementation of MTS in Fig. 4

the epLSC, is a refinement of the MTS of Figure 4. The re-
finement relation between them is {(0, 0), (1, 1), (4, 2), (3, 9),
(2, 3), (7, 4), (8, 5), (6, 6), (5, 7), (0, 5), (0, 6), (0, 7), (0, 8)}.
It is simple to show that this implementation satisfies the
epLSC of Figure 3. An interesting point to observe in this
example is that the implementation has a non-deterministic
choice at state 6 on label getBalance which is simulated by
state 6 in the MTS which does not have a non-deterministic
choice on getBalance.

The algorithm builds an MTS with states that have the
following structure < α, Θ > where α ∈ prefixes(LP ) is a
prefix of some word over the language of the prechart, and
Θ ∈ ℘(suffixes(LM )) is a set of suffixes of words in the
language of the main chart.

Given a state s =< α, Θ >, the word α describes the por-
tion of the prechart that has been covered by the execution
leading to state s. The word α is the longest suffix of the
executions that lead to s that is in prefixes(LP ). The set
of words Θ ∈ ℘(suffixes(LM )) represents the remaining

obligations generated by an execution leading to s. In other
words, the suffixes of words in the main chart that have
yet to occur in order for the activation of a prechart in an
execution leading to s be satisfied.

The synthesis algorithm (see Algorithm 1) starts with an
MTS with no transitions and one state (lines 3-9). The
initial state of the MTS is < ε, ∅ > , i.e. the state in which no
prefix of the epLSC has been recognised and no obligations
have been acquired. The algorithm takes each unmarked
state s =< α, Θ > of the MTS (line 12), marks it (line
14) and then for each label in the scope, it adds transitions
and possibly new states reached by these transitions (lines
15-16). Also, if the state has obligations, a τ transition
is added to forget the obligations inherited from previous
states. However if the prechart holds it will still hold after a
τ transition and new obligations will appear (to satisfy the
main chart). The criteria for adding transitions and states
is based on the values of α and Θ and is encapsulated in
procedure addTransitions. The algorithm finishes when all
the states added by procedure addTransitions have been
marked.

The core of the algorithm is in procedure addTransitions
(see below). The procedure adds at least one transition on t
from s =< α, Θ >. It may add various required transitions
on t to fullfil obligations in Θ.

First, the portion of the prechart that has been recognised
once t occurs is computed (line 3). In addition, the set of
obligations for the state reached on t from s is computed.
Obligations can emerge in two ways: as new or inherited.

If the occurrence of t completes the prechart (line 5) then
all words of the main chart become new obligations (line 7),
otherwise there are no new obligations (line 10).

Then the procedure adds the transitions. First by adding
a non-deterministic choice over required transitions labelled
t for each of the obligations of the current state that start
with t. What is left from this obligations is defined by
follows(Θ, t) which is the set of word θ such that tθ ∈
Θ. These non-deterministic choices represent the branches
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Data: E = �(P, M, ΣR)
Result: W = (S, ΣR, Δr, Δp, s0) s.t.

∀I@ΣR ∈ I[W ] · I |= E
begin1

Δr ←− ∅;33

Δp ←− ∅;4

s0 ←−< ε, ∅ >;5

S ←− ∅;6

W ←− (S, Σ, Δr , Δp, s0);7

add(s0,S);99

while unmarked(S) �= ∅ do1111

< α, Θ > ←− get(unmarked(S));12

mark(< α, Θ >);1414

foreach t ∈ ΣR do15

addTransitions(S, < α, Θ >, t, Δr, Δp)16

if Θ �= ∅ then /* obligations exists */17

18

/* τ transition that forgets them */
addTransitions(S, < α, Θ >, τ, Δr , Δp)2020

return W ;21

end22

Algorithm 1: Synthesis of MTS

in which the MTS shall ensure that there is at least one
execution in which the obligation introduced by the main
chart is exhibited (lines 12 to 23). Note that requiring a
unique required transition over t to fulfil all the obligations
starting with t would be too strong, as the semantics of
epLSC does not require that it is the same branch that
satisfies the common prefix of all words in the language of
the main chart. If it is not the end of an obligation, what
is left, is set as inheritedObligation (line 17). Otherwise
inheritedObligation is the empty set as the obligation was
just fulfilled. Then the obligations for the next state (line
19) will be the new obligations contracted by the last tran-
sition (LM if the prechart holds, ∅ otherwise) and what is
left from the obligation being fulfilled (if any).

In addition to required transitions over t, because of the
existential nature of the semantics of epLSC, there may also
be an execution starting with t even if it’s not an obligation.
Hence, in line 24 to 28 a maybe transition on t is added if
there are no obligations starting with t (i.e the first symbols
of Θ does not contain t). Again, it may or may not have new
obligations depending on the last transition t. There are no
inherited obligations here as no obligation is being fulfilled.

Note that by definition, follows(Θ, τ ) = ∅ and
τ /∈ firsts(Θ) as obligations do not contain τ . So there are
no obligations by τ , they are always set as maybe transitions
and so they drop inherited obligations on the current state.

The synthesis algorithm above can be proven correct and
complete with respect to the semantics of epLSC. In other
words, it can be proven that all implementations of the syn-
thesised MTS from an epLSC satisfy the epLSC (Theorem 1)
and that all LTS that satisfy an epLSC are implementations
of the MTS synthesised from it (Theorem 2).

Theorem 1 (Correctness). Let E = �(P, M, Σ) and
W the result of applying the synthesis algorithm to E. If
I@Σ ∈ I[W ], then I |= E.

The proof of this algorithm consists in assuming that there
is an LTS I such that I@Σ is an implementation of W that
does not satisfy E = �(P, M, Σ) and showing that there
can be no refinement relation between W and I@Σ. As I

begin1

/* get significant prefix for next state */
α′ ←− next(α, t);33

/* get new obligations for next state */
if suffixes(α′) ∩ LP �= ∅ then55

/* prechart holds */
newObligations←− LM ;77

else8

newObligations←− ∅;1010

/* no new obligations */

/* add transitions */
/* add new required branch for each obligation

starting with t */
foreach θ′ ∈ follows(Θ, t) do1212

if θ′ = ε then13

/* t ends with obligation */
inheritedObligation←− ∅;14

else15

/* propagate old obligation without
initial t */

inheritedObligation←− { θ′ };1717

nextState ←−1919

< α′, inheritedObligation ∪ newObligations >;
add((< α, Θ >, t , nextState), Δp);20

add((< α, Θ >, t , nextState), Δr);21

/* Add new state if not previously visited
*/

addIfNotPresent(nextState, S);2323

if t /∈ firsts(Θ) then24

/* add maybe transition */
nextState ←−< α′, newObligations >;2626

add((< α, Θ >, t ,nextState), Δp);27

addIfNotPresent(nextState, S);28

end29

Procedure addTransitions(S,< α, Θ >, t, Δr, Δp)

does not satisfy E there must be a finite execution Π = δβ
over the alphabet of I such that the projection β onto the
alphabet of E is in LP and that the state reached from I on
β cannot exhibit some behaviour γ required in LW . That

is I
Π

=⇒ I ′ and I ′ γ

=⇒. The assumption that I@Σ is a
refinement of W entails that there is an W ′ that is refined

by I ′@Σ such that W
Π|Σ=⇒ W ′ and that W ′ γ

=⇒. From
this a contradiction can be shown based on the following
two properties. The first is that that any trace ending in
a sequence that activates the prechart, if replayed over W
using only events in the scope of E reaches a state s =<
α, Θ > in which the obligations imposed by the main chart
are in Θ (see Property 1). The second property is that if a
state s of W has an obligation w then there is a required
trace from s that satisfies the main chart (see Property 2).

Property 1. Let W = (S, Σ, Δr, Δp, s0) be the MTS re-
sulting from the synthesis algorithm applied to E = �(P, M,
Σ). For all βγ ∈ Act∗ such that γ|Σ ∈ LP it is the case that

∀s =< α, Θ >∈ S · (W βγ−→ s ⇒ LM ⊆ Θ)

Property 2. Let W = (S, Σ, Δr, Δp, s0) be the MTS re-
sulting from the synthesis algorithm applied to E = �(P, M,

Σ). If < α, Θ >∈ S, then ∀θ ∈ Θ· < α, Θ >
θ−→r

The constructive proof for the completeness theorem stated
below is rather long and cumbersome. Due to space limita-
tions we omit it from this paper.
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Theorem 2 (Completeness). Let E = �(P, M, Σ)
and W the result of applying the synthesis algorithm to E.
If I |= E then I@Σ ∈ I[W ].

5. CASE STUDY: THE MINE PUMP
In this section, we report on a case study we have con-

ducted on a pump controller system in a mine sump [8]. In
this system, a pump controller is used to prevent the wa-
ter in a mine sump from passing some threshold, and hence
flooding the mine. To avoid the risk of explosion, the pump
may only be on when there is no methane gas present in the
mine. The pump controller monitors the water and methane
levels by communicating with two sensors, and controls the
pump in order to guarantee the safety properties of the pump
system. An epLSC exemplifying the intended execution of
the mine pump controller system is depicted in Figure 7.

The case study was conducted by iterating a synthesise-
analyse-elicit cycle. Firstly, an MTS is synthesised from
known properties and scenarios. The scenario language and
associated synthesis algorithm used are those described in
this paper. The language for describing properties is the
linear temporal logic of fluents for which a synthesis algo-
rithm that builds MTS that characterise all LTS that satisfy
the property has been presented in [14]. Composition of the
various MTS resulting from epLSCs and FLTL properties is
performed using MTS merge. In this paper, we shall only
provide natural language descriptions of the properties as
the formalisation of these is beyond the scope of the paper.

In the second stage, the maybe behaviour of the result-
ing MTS is analysed to identify missing required and pro-
scribed behaviour. Analysis is performed using standard
model-based validation techniques such as inspection (both
of the textual and graphical representation of the MTS),
animation, abstraction and minimisation. Tool support for
these analyses is provided by the Modal Transition System
Analyser (MTSA) available at:

http://lafhis.dc.uba.ar/~suchitel/MTSA.html
Finally, the exploration of the maybe behaviour leads to

the third stage in which new scenarios and properties are
elicited based on the available knowledge of the problem do-
main. For this particular case study existing documentation
for the mine pump controller was used as a replacement of
the domain expert.

The cycle was repeated until the synthesised model had no
maybe transitions on events controlled by the mine pump.
The final model, the LTS for the mine pump controller (see
Figure 10), was obtained by then converting all transitions
controlled by the environment to required, hence producing
the controller that constrains as least as possible its envi-
ronment.

One of the challenges of this particular case study is that
the mine pump controller requires a timed model in order to
capture the urgency of actions such as switching the pump
off when there is methane present to avoid an explosion.
Consequently, some of the elicited properties must make use
of an explicit tick event, signalling the successive ticks of a
global clock to which components with timed requirements
synchronize. This corresponds to a standard approach to
modelling discrete-time in event-based formalisms [12].

5.1 First Iteration
The case study started with the epLSCs depicted in Fig-

ure 7 and 8. Note the dashed vertical line to the right of the

Figure 7: Scenario 1 for the Mine Pump System

Figure 8: Scenario 2 for the Mine Pump

precharts. The line is the syntactic representation of what
is called a co-region[7]. Co-region allow describing arbitrary
interleavings of events, for instance in Scenario 1, the lan-
guage of the prechart contains the 6 possible orderings of
events switchOff, methLeaves, and highWater.

Scenario 1 exemplifies the pump being turned on when
the level of the water is high and methane is not above the
critical threshold and the pump is off. Scenario 2 provides
an example of the the pump being switched off when the
pump is on and the level of methane is above the critical
threshold.

In addition, four safety properties were used. The first two
correspond to the key safety properties of the mine pump
system: prevent flooding (φ1 - “if there is no methane and
high water, the pump must on at the next state”) and pre-
vent an explosion (φ2 - “if there is methane present then the
pump must be off at the next state”). The other two prop-
erties (φ3 and φ4) simply state that the pump must not be
turned on (resp. off) when it is already on (resp. off).

Note that in this case Scenarios 1 and 2 act as witnesses
of the safety properties φ1 and φ2, they provide examples as
to how the system may achieve these properties.

Having synthesised an MTS for each property and each
epLSC, an MTS that combines the behaviour information
of all models is produced via MTS merging.

Analysis of this first partial operational model for the
mine pump controller (M1) resulted in a number of find-
ings. Firstly, we identified a number traces that exhibited
undesired behaviour of environment controlled actions. For
instance, the water level jumping from low to high with-
out going past the medium mark. This led to producing a
behaviour model Mwater and Mmethane describing the ex-
pected behaviour of water and methane levels. These mod-
els were composed in parallel with M1, and all subsequent
refinements of M1, to eliminate behaviours that violate as-
sumptions on the environment.
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Figure 9: Scenario 3 for the Mine Pump System

5.2 Remaining Iterations
The second iteration led to the scenario of Figure 9 which

provides further examples of the pump being switched off,
in this case, when the level of water in the mine is low.
This is to avoid the pump malfunctioning because there is
no water to pump out. The example prompted in the next
iteration a discussion on what is an appropriate precondition
for switching the pump off. We considered three possible
strategies for the pump: The pump is eager, in other words
that if there is any water to pump out then the pump should
remain on, or lazy, as long as there is no high water, the
pump should be off, or a pump that minimises the changes
in state, if it is on, it continues to be on until the water is
low, and if it is off it continues to be off until water is high.

Although a number of pump strategies were explored dur-
ing the case study, we report on just one of the possible
evolutions of the elaboration process. In this paper we opt
for an variation of an eager pump as captured by property
φ5 stating that water low is the precondition for switching
pump off and property φ6 which described the precondition
for switching the pump on: the pump can be turned on
only if water is not low and methane is not present. Finally,
through inspection, we identified two maybe transitions, one
for switching on and the other for switching off the pump,
that were removed and a third maybe transition for switch-
ing the pump on that was converted to a required transition.

Having converged to an MTS in which the only actions
with maybe transitions were those controlled by the environ-
ment ({ methAppears, methLeaves, medWater, highWater,
tick, lowWater, τ }), the iterative synthesise-analyse-elicit
cycle concluded. The resulting model captures the intended
behaviour of the pump controller while leaving open assump-
tions on how the environment will behave. By converting
all maybe transitions to required, a model for the pump
controller that makes as least possible assumptions on the
environment is obtained. The resulting LTS is depicted in
Figure 10.

6. DISCUSSION AND RELATED WORK
A variety of scenario-based notations with diverse features

and semantics have been developed. We focus our discussion
on those with features that relate to the precharts of epLSC.
The use of precharts or triggers to augment the expressive-
ness of sequence charts notations has been investigated by
several authors. However, to the best of our knowledge, all
approaches adopt a universal semantics. Krüger [9] extends
MSC with triggers associating a universal semantics to them
(“if a certain interaction pattern has occurred in the sys-
tem, then another one is inevitable”). Sengupta and Cleave-
land [13] also present a triggering mechanism with univer-
sal interpretation but triggers are specified component-wise

rather than system-wide. In the original formulation of
LSCs [3], Damm and Harel introduce precharts for both
existential and universal LSCs. However, the semantics of
an existential LSC with a prechart P and main chart M is
equivalent to that of an existential LSC with a main chart
PM and no prechart. Hence, in this case the prechart in
existential LSCs results in a formatting option rather than
a semantically meaningful element. In fact, in later devel-
opments of LSCs (e.g. [1, 10]) the prechart for existential
LSCs is dropped.

The semantics of epLSC can be understood as a fragment
of the temporal branching logic CTL∗. Informally, they
stand for a formula of the formula AG(p → E m) where p
and m codify the language of the prechart and main chart.
Indeed, the semantics cannot be formulated in terms of the
linear temporal logic LTL, traces or histories as the seman-
tics of uLSC and eLSC [1] or the triggered MSC in [9] can.

Many of the approaches to scenario-based specification
provide synthesis algorithms that produce operational be-
haviour models. As discussed previously the result of syn-
thesis can be one of the many possible behaviour models
that satisfy the scenario description or a behaviour model
that characterises through some notion of refinement all the
behaviour models that satisfy a given scenario description.

Given a scenario description interpreted existentially, it is
possible to synthesise a behaviour model M that represents
the lower bound to the expected system behaviour, i.e. M
“does as least as possible” while still providing the existen-
tial scenarios. This model characterises via trace inclusion
or simulation all behaviour models that satisfy the scenar-
ios: If N can simulate or includes the traces of M , then it
satisfies the scenario description. Approaches such as [16,
18] provide synthesis algorithms of this kind.

Alternatively, given universal scenarios, it is possible to
synthesise a model M that does “as much as possible” while
preserving the scenarios. This model provides an upper-
bound to the intended system behaviour and can also be
thought of as characterising all behaviour models that satisfy
the scenarios: If N is simulated by M , then N satisfies the
universal scenario description. Approaches such as [1] when
restricted to uLSC and [13] provide this style of synthesis.

In [14] we show that traditional, two valued, behaviour
models such as LTS or statecharts cannot adequately model
descriptions that contain both existential and universal state-
ments such as in a combination of eLSCs and uLSCs. In
other words, that it is not possible to build an LTS, for exam-
ple, that characterises all LTS that satisfy the mixed modal-
ity scenario description. Roughly, this is because refinement
notions for traditional behaviour models can interpret the
model as an upper-bound or lower-bound to the expected
behaviour of the system but cannot support both bounds
simultaneously. Consequently, approaches to synthesis that
support combinations of existential and universal scenarios
are limited to providing an example of a behaviour model
that satisfies the scenario description. This is the case for
algorithms that synthesise behaviour models from uLSC and
eLSC such as those given in [2] and [5]. This paper dif-
fers from [14] in that the MTS synthesis method proposed
in [14] works only for existential scenario languages without
precharts.

In this paper, a three valued behaviour model is used
as the target for synthesis. This step up in expressiveness
is what allows the definition of a synthesis algorithm that
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Figure 10: Final MTS

characterises all LTS models that satisfy an epLSC. Such
a result cannot be achieved by synthesising two-valued be-
haviour models such as LTS due to the fact that both upper
and lower bound behaviour must be described: If the system
were to perform the prechart (upper-bound, as the system
is not required to) then the system must be able to perform
the main chart (lower-bound, the system is required) but
may be able to exhibit other behaviour (upper-bound, it is
not required to do so).

7. CONCLUSIONS
In this paper we have defined a scenario language with

existential semantics and that supports conditional specifi-
cation of behaviour. The semantics is in line with scenario-
based and use-case based approaches to requirements engi-
neering and provides a better fit with uLSCs as the standard
eLSCs do not adequately support precharts. This correspon-
dence between epLSC and uLSC further supports our aim
of providing a uniform framework for moving from examples
to comprehensive descriptions throughout the requirements
process. In addition, we have defined a novel synthesis al-
gorithm that constructs MTS whose elaboration guarantees
the preservation of scenarios.

In future work, we aim to develop an MTS synthesis algo-
rithm for uLSCs and more generally, to continue to develop
support for elicitation and elaboration of behaviour models.
We also intend to conduct larger case studies to continue to
validate our techniques.
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