
Contractor.NET: Inferring Typestate Properties
to Enrich Code Contracts

Edgardo Zoppi, Víctor Braberman, Guido de Caso, Diego Garbervetsky, Sebastián Uchitel
Departamento de Computación, FCEyN, UBA

Buenos Aires, Argentina
{ezoppi, vbraber, gdecaso, diegog, suchitel}@dc.uba.ar

ABSTRACT
In this work we present Contractor.NET, a Visual Studio
extension that supports the construction of contract speci-
fications with typestate information which can be used for
verification of client code. Contractor.NET uses and ex-
tends Code Contracts to provide stronger contract speci-
fications. It features a two step process. First, a class source
code is analyzed to extract a finite state behavior model (in
the form of a typestate) that is amenable to human-in-the-
loop validation and refinement. The second step is to aug-
ment the original contract specification for the input class
with the inferred typestate information, therefore enabling
the verification of client code. The inferred typestates are
enabledness preserving : a level of abstraction that has been
successfully used to validate software artifacts, assisting in
the detection of a number of concerns in various case studies
including specifications of Microsoft Server protocols.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verifi-
cation—validation

General Terms
Algorithms, verification

Keywords
Typestate inference, contract strengthening, enabledness ab-
stractions

1. INTRODUCTION
Design by contract is a programming discipline that pre-

scribes that software designers should define formal, pre-
cise and verifiable interface specifications for software com-
ponents, which extend the ordinary definition of abstract
data types with preconditions, postconditions and invari-
ants. Code Contracts [5] is a Microsoft Research project

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
TOPI ’11, May 28, 2011, Waikiki, Honolulu, HI, USA
Copyright 2011 ACM 978-1-4503-0599-0/11/05 ...$10.00.

that brings the advantages of design-by-contract program-
ming to all .NET based programming languages, enabling
the use of contracts without requiring a specific compiler.
These contracts act as documentation which can be used to
improve the quality of software via run-time checking and
static verification of client code conformance to contracts.

The Code Contracts project focuses on contracts spec-
ifying requires clauses over methods parameters rather than
requires clauses (and ensures clauses for that matter) over
the object state: Few classes are provided with specifications
that describe the state in which an object must be in when
a method is executed. This is not surprising, contracts that
refer to a shared data structure used by various methods
are not as easy to write nor validate. Contracts combine in
unexpected ways when sequences of methods are invoked,
leading to inaccurate documentation and unintended speci-
fied behavior, this in turn leads to problems when trying to
assure the quality of client code.

Typestate specifications [4] prescribe the possible coarse
grained states in which an object can be during its lifetime.
They are used to enforce safety properties that depend on
changing object states. Typestates can be used to check
conformance of client code for a class (i.e., enforcing that
clients always perform valid invocation sequences over an
API). This is typically assured using type-checking tech-
niques (e.g., the Fugue protocol checker [4]) or by encoding
the typestates as state machines to be checked with the aid
of a software model checker (e.g., the Slam SDV [1]).

Typestate specifications, though applied in particular set-
tings such as verification of lower level API client code, are
not widespread. We believe that typestate specifications can
support documentation of class behavior and verification of
client code in a wider context and that the vision pursued by
approaches such as Code Contracts can be strengthened
by the use of typestates.

Contractor.NET1 is a Visual Studio extension that
supports the construction of contract specifications with type-
state information which can be used for verification of client
code. Internally, Contractor.NET features a two step
process. First, source code is analyzed to extract a likely-
typestate that is amenable to human-in-the-loop validation
and refinement. The second step is to decompose on a per-
method basis the final typestate back into a contract speci-
fication which can be used in the context of the Code Con-
tracts project for verifying client code. The typestate itself
can be used as documentation to support client code devel-
opers understand the contract specification.

1Available from: http://lafhis.dc.uba.ar/contractor.net

The produced abstractions are enabledness preserving [3]:
Behavior models which group class instances according to
the methods they enable. Such abstractions have been suc-
cessfully used to validate software artifacts both in the form
of contracts and source code, assisting in the detection of a
number of concerns in various case studies including speci-
fications of Microsoft Windows Server protocols.

The rest of this paper is structured as follows: §2 presents
an illustrative example of the Contractor.NET tool us-
age. In §3 and §4 we present the details of the two steps
that comprise our approach: typestate inference and con-
tract strengthening, respectively. §5 gives a brief description
of the Contractor.NET Visual Studio Extension. The ar-
ticle concludes with a brief related work overview in §6 and
final remarks in §7.

2. MOTIVATION
We now discuss a trivial example to illustrate how Con-

tractor.NET can aid developers. Consider the scenario of
a train door controller. There is a safety requirement that
the door should remain closed whenever the train is mov-
ing. However, under certain circumstances such as an emer-
gency, the door must still be opened. The Door class, listed
in Figure 1, has the following methods: Open and Close send
signals to the door mechanism to release and lock the doors,
respectively. Start and Stop are events monitored by the
door, which indicate that the train has started or stopped
moving, respectively. Alarm is an event which indicates that
someone pressed an emergency button and Safe is an event
indicating that the emergency situation is over.

1 public class Door {
2 public bool danger , closed , moving;
3

4 private void Invariant () {
5 Contract.Invariant(danger ? !closed : true);
6 }
7

8 public Door() {
9 closed = true; moving = false; danger = false;

10 }
11 // Controlled operations
12 public void Open() {
13 Contract.Requires(closed && !moving);
14 closed = false;
15 }
16 public void Close() {
17 Contract.Requires (! closed && !danger);
18 closed = true;
19 }
20 // Monitored events
21 public void Start() {
22 Contract.Requires (! moving);
23 moving = true;
24 if (! danger) closed = true;
25 }
26 public void Stop() {
27 Contract.Requires(moving);
28 moving = false;
29 }
30 public void Alarm() {
31 Contract.Requires (! danger);
32 danger = true; closed = false;
33 }
34 public void Safe() {
35 Contract.Requires(danger);
36 danger = false;
37 }
38 }

Figure 1: Train door controller

Each of these methods is equipped with a requires clause
which prevents it from being executed in the wrong context.
However, none has associated ensures clauses.

Given one particular method, understanding if it pro-
vides the expected functionality is relatively easy. On the
other hand, understanding the interaction between them is a
much more complex task: we need to analyze every possible
method call sequencing.

In order to assist the developer with this challenging prob-
lem, as the first step of our approach we propose the auto-
matic construction of a finite state typestate-like abstraction
as the one in Figure 2. Our Contractor.NET tool auto-
matically built this abstraction in less than 15 seconds on a
Core i5 computer with 4 GB of RAM.

Each of the abstract states groups all the class instances
enabling the same set of methods, and the initial one is
marked with a double circle. For instance, S2 is the only
state in the abstraction that enables Close, Start and Alarm,
while disabling Open, Stop and Safe. This instance group-
ing strategy, which we call enabledness preserving, provides a
good abstraction size/precision compromise and has proved
to be useful to discover inconsistencies between the imple-
mentation and the expected global functionality [3].

After the Door class is released, other pieces of software
might start using it. Figure 3 presents one such possible
client. In this scenario the train faces an emergency while
moving between stations, but it turns out to be a false alarm.

1 public void AlarmScenario () {
2 Door door = new Door ();
3 door.Start (); // Departing station
4 door.Alarm (); // Emergency button pressed ...
5 door.Safe (); // ... but it was a false alarm
6 door.Stop (); // Arriving at next station
7 door.Open (); // Opening doors
8 door.Close (); // Getting ready to depart again
9 }

Figure 3: Train door client code

The client developer might want to statically verify his
code using Code Contracts. Unfortunately, the Door class
API does not include any ensures clauses, making it impos-
sible for Code Contracts to successfully verify it.

For the second and final step of our technique, we present
a contract strengthening mechanism that enriches the Door

class Code Contracts specification with the restrictions
obtained from its generated typestate. This strengthened
specification makes it easier for the Code Contracts static
verifier to discover an error in the client code. In particular,
at line 7 in Figure 3 the client is attempting to open the doors
when in fact they were already opened when the emergency
started; therefore violating the Open method requires.

The problem originates from the wrong assumption that
the doors would automatically be closed once the emer-
gency was over (Safe method). This misunderstanding of
the Door functionality could have been avoided by inspect-
ing the typestate in Figure 2. Following the client method

calls gives the trace S1
Start−→S3

Alarm−→S5
Safe−→S6

Stop−→S2. In this last
state the Open method is not enabled and, with our enriched
specification, this is detected by Code Contracts.

This simple example shows how our approach can assist
client code developers in finding problems with respect to
the APIs that they use. It also hints at the potential of us-
ing enabledness preserving abstractions to validate contract
specifications provided explicitly on a per method basis.

Figure 2: Train door controller abstraction

In the next sections we will elaborate on how to auto-
matically construct typestates such as the one depicted in
Figure 2 and how to use them to find faulty clients such as
the one in Figure 3.

3. TYPESTATE CONSTRUCTION
Typestates are automatically constructed by setting a fixed

level of abstraction, namely enabledness of methods [3]. A
class C can be seen as a structure 〈M, F, R, inv, init〉,
where M = {m1, . . . ,mk} is a finite set of public method
labels, F is an M -indexed set of method implementations,
R is an M -indexed set of requires clauses, inv is the class
invariant, and init denotes the possible initial conditions
given by the constructors. Given a class C and two in-
stances c1, c2, we say that c1 and c2 are enabledness equiv-
alent (noted c1 ≡e c2) iff for every m ∈ M : c1 satisfies Rm

iff c2 satisfies Rm.
The set of class instances, when quotiented by ≡e, results

in a set of abstract states, such that each one is mapped to
a (distinct) group of enabled methods. Each abstract state
groups all the instances that share the same set of enabled
methods, and can be characterized by a state invariant. For-
mally, the invariant of an abstract state given by a set of
methods ms ⊆M is a function invms that takes an instance
of C and returns a boolean. It is formally defined as:

invms(c)
def⇔ inv(c) ∧

∧
m∈ms

c safisties Rm ∧
∧

m/∈ms

c does not satisfy Rm

Having defined the set of abstract states, we still need to
figure out which transitions must be added in order to ob-
tain an enabledness-preserving abstraction. In other words,
given abstract states ms1 and ms2 we must decide if it is
possible for a class instance c1 in ms1 to execute a method
m ∈ ms1 and evolve into a class instance c2 in ms2.

Following the work in [3], where abstractions are built
using reachability queries, we now instead use the Code
Contracts static verification engine. More concretely, for
every method m ∈ ms1, in order to decide if the transition
ms1

m−→ ms2 needs to be added to the abstraction, we ex-
tend class C with an extra method, as depicted in Listing 4.

1 private void ms1_m_ms2 () {
2 Contract.Requires(this.inv_ms1 ());
3 Contract.Ensures (!this.inv_ms2 ());
4 this.m();
5 }

Figure 4: A method that checks if ms1
m−→ ms2

If the ensures clause is successfully verified, then every
instance that satisfies the state invariant of ms1 does not
satisfy the invariant of ms2 after executing the method m.
Therefore, if the method is verified, the transition ms1

m−→
ms2 is not added to the abstraction. On the other hand, if
the method is not verified, or if the static verifier is uncer-
tain, the transition is added2.

The reader may notice that a class with k public methods
has potentially 2k reachable abstract states. A näıf imple-
mentation would compute all the 2k states and its transi-
tions, only to later restrict the result to the reachable frag-
ment. In [3] we present an algorithm that performs a parallel
BFS exploration of the abstract state space, therefore dras-
tically reducing running times.

The obtained typestate has multiple uses: i) It can be used
for class validation [3]. That is, for comparing the typestate
with the developer understanding of the class intended func-
tionality and find if there are any discordances (i.e. potential
bugs). ii) It can also be used to enforce correct client usage.
That means checking that client sequences are included in
the set of traces of the class typestate. This enforcement
can be performed statically via typestate checking (e.g., [4])
or by typestate monitoring using approaches such as [2].

4. CONTRACT STRENGTHENING
The second step of our approach consists in leveraging on

the inferred typestate to verify that clients use the class cor-
rectly. This is accomplished by extending the original Code
Contracts specification of the API to add restrictions that
make it adhere to its underlying typestate. The approach
we follow is that of typestate monitoring (e.g., [2]): instru-
menting the class in order to raise an exception when a client
violates the typestate. In our setting we work with classes
that use Code Contracts clauses and, instead of run-time
checks, we add requires and ensures clauses.

For instance, consider the Close method from Figure 1.
In Figure 5 we show its strengthened version, employing the
information extracted from the typestate in Figure 2. Line 2
defines a new variable to keep track of the current abstract
state. Line 5 is the requires clause from the original class.
Since Close is only enabled on states S2 and S6, line 6 cod-
ifies this restriction using the newly added variable. Line 8
specifies how the state variable is updated, which depends
on its previous value. Lines 9 and 10 do the actual state
variable update. Finally, line 11 comes from the original
class.

2If method m has parameters the encoding is trickier; see [3].

1 public class Door {
2 public int state;
3 // ...
4 public void Close() {
5 Contract.Requires (! closed && !danger);
6 Contract.Requires(state ==2 || state ==6);
7 Contract.Ensures(old(state)==2 ?
8 state ==1 : state ==3);
9 if (state ==2) state = 1;

10 else if (state ==6) state = 3;
11 closed = true;
12 }
13 }

Figure 5: Strengthened Close method

Notice how not only we updated the state variable, but
also we added an ensures clause with this information.Code
Contracts can use this clause to perform modular static
verification of client usage of the Door class. Code Con-
tracts can be used as usual without the need to make it
typestate-aware or modify it whatsoever. Client code can
be checked at compile-time using the static analysis engine.
Users which turn off the static checker, or if the verification
does not provide a definite answer (due to potential false
positives), will still enjoy run-time specification checks.

In Figure 5 the state variable update only depends on
its previous value since the typestate was a deterministic
automaton. In the presence of non determinism, the state

variable update will also depend on some of the class fields.

5. PLUG-IN DETAILS
As we mentioned before, Contractor.NET is a Visual

Studio Extension. Users are presented with a Contractor Ex-
plorer tool window (shown in Figure 2), which allows them
to choose which class to analyze.

Once the desired class is selected, the analysis starts in the
background. The typestate view is automatically updated
every time a new state or transition is found so that the user
can see a preliminary result without having to wait for the
analysis to complete.

The resulting typestate is shown on the right panel (using
the Microsoft MsAgl library3), where the user can select
and rearrange the layout. Features like zooming and pan-
ning are also provided. Hovering the mouse over an abstract
state provides a tooltip indicating the set of enabled actions.
Finally the user can export the typestate in many formats,
including XML and scalable vector graphics.

Our current version of Contractor.NET, which is avail-
able for download, implements all the features presented in
this paper. That is, the automatic typestate inference and
contract strengthening, as explained in §3 and §4.

Finally, Contractor.NET works at Common Interme-
diate Language (CIL) level (via Microsoft’s CCI tool4), so
it can handle classes written in any .NET language.

6. RELATED WORK
Due to space limitations we will briefly discuss the ap-

proaches which are closest to ours.
Regarding typestate construction, our technique is related

to approaches that statically synthesize safe client interfaces
(e.g., [6]) out of a program. Any sequence of methods that

3
http://research.microsoft.com/en-us/projects/msagl

4
http://cciast.codeplex.com

is not accepted by our abstraction will not be allowed by
a program. However, interface synthesis approaches aim to
obtain a set of safe traces from a client perspective, using
abstraction for verification purposes [4, 1] rather than valida-
tion. The models they construct tend to be overly restrictive
and not suitable for human-inspection.

From a client verification perspective, the models of [6]
may be too conservative and rule out legal usages. In con-
trast, our abstractions over-approximate the class state space,
so we might accept some invalid client sequences. Overall,
considering our technique builds up a typestate from scratch,
we leave developers in a better position since they can reject
more invalid clients than before.

Regarding contract strengthening using typestate infor-
mation, the problem is related to typestate run-time mon-
itoring [2]. The closest approach to our work is [7]: a
Java Modeling Language (JML) extension to include explicit
typestate annotations. These are then translated to regular
JML annotations following a strategy similar to ours.

To the best out knowledge ours is the first approach to
deal with both typestate construction and enforcement via
contract strengthening.

7. CONCLUSION
In this work we presented Contractor.NET, a Visual

Studio extension which allows developers to automatically
construct a typestate for the class they are developing. This
inferred typestate is enabledness-preserving, a level of ab-
straction which conveys a concise, yet representative, view
of the class state space; assisting the programmer in under-
standing the code and finding problems in it. This abstrac-
tion can also be used to strengthen the class contract spec-
ification, enabling static verification and run-time checking
of client code via Code Contracts.

For future work, we plan to finish the implementation the
automatic contract strengthening, particularly considering
the necessary changes in order to support non-deterministic
typestates. Once this is done, we plan to experiment with
our technique in more .NET classes, particularly the ones
from its standard class libraries. Finally, we are also working
in a multithreaded version of the algorithm (see [3]).

8. REFERENCES
[1] T. Ball and S. Rajamani. The SLAM project:

debugging system software via static analysis. In POPL
’02, pages 1–3, 2002.

[2] E. Bodden, P. Lam, and L. Hendren. Finding
programming errors earlier by evaluating runtime
monitors ahead-of-time. In FSE ’08, pages 36–47, 2008.

[3] G. de Caso, V. Braberman, D. Garbervetsky, and
S. Uchitel. Program abstractions for behaviour
validation. In ICSE 2011 (to be published), 2011.

[4] R. DeLine and M. Fahndrich. Typestates for objects.
ECOOP’04 (LNCS), pages 465–490, 2004.

[5] M. Fähndrich, M. Barnett, and F. Logozzo. Embedded
contract languages. In SAC’10, pages 2103–2110, 2010.

[6] T.A. Henzinger, R. Jhala, and R. Majumdar.
Permissive interfaces. In FSE ’05, pages 31–40, 2005.

[7] T. Kim, K. Bierhoff, J. Aldrich, and S. Kang.
Typestate protocol specification in JML. In SAVCBS
’09, pages 11–18. ACM, 2009.

